Parity–time symmetric solitons of the complex KP equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 274-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the parity–time symmetric solitons of the complex KP equation using the totally nonnegative Grassmannian. We obtain that every element in the totally nonnegative orthogonal Grassmannian corresponds to a parity–time symmetric soliton solution.
Keywords: $PT$ symmetry, Grassmannian, complex KP equation
Mots-clés : solitons.
@article{TMF_2024_219_2_a5,
     author = {J.-H. Chang},
     title = {Parity{\textendash}time symmetric solitons of the~complex {KP} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {274--286},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a5/}
}
TY  - JOUR
AU  - J.-H. Chang
TI  - Parity–time symmetric solitons of the complex KP equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 274
EP  - 286
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a5/
LA  - ru
ID  - TMF_2024_219_2_a5
ER  - 
%0 Journal Article
%A J.-H. Chang
%T Parity–time symmetric solitons of the complex KP equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 274-286
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a5/
%G ru
%F TMF_2024_219_2_a5
J.-H. Chang. Parity–time symmetric solitons of the complex KP equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 274-286. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a5/

[1] S. M. Alamoudi, U. Al Khawaja, B. B. Baizakov, “Averaged dynamics of soliton molecules in dispersion-managed optical fibers”, Phys. Rev. A, 89:5 (2014), 053817, 9 pp. | DOI

[2] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion”, Appl. Phys. Lett., 42:3 (1973), 142–144 | DOI

[3] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fiber”, Phys. Rev. Lett., 45:13 (1980), 1095–1098 | DOI

[4] A. Hasegawa, Y. Kodama, Solitons in Optical Communications, Oxford Series in Optical and Imaging Sciences, 7, Clarendon Press, Oxford, 1995 | Zbl

[5] V. V. Konotop, J. Yang, D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$-symmetric systems”, Rev. Mod. Phys., 88:3 (2016), 035002, 59 pp. | DOI

[6] S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, Yu. S. Kivshar, “Nonlinear switching and solitons in $PT$-symmetric photonic systems”, Laser Photonics Rev., 10:2 (2016), 177–213 | DOI

[7] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR

[8] E. P. Wigner, Group Theory and Its Application to Quantum Mechanics of Atomic Spectra, Pure and Applied Physics, 5, Academic Press, New York, 1959 | MR

[9] I. V. Barashenkov, D. A. Zezyulin, V. V. Konotop, “Exactly solvable Wadati potentials in the $PT$-symmetric Gross–Pitaevskii equation”, Pseudo-Hermitian Hamiltonians in Quantum Physics (Palermo, Italy, May 18–23, 2015), Springer Proceedings in Physics, 184, eds. F. Bagarello, R. Passante, C. Trapani, Springer, Cham, 2016, 143–156, arXiv: 1511.06633 | DOI

[10] A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, A. A. Lisyanskii, “PT-simmetriya v optike”, UFN, 184:11 (2014), 1177–1198 | DOI | DOI

[11] G. Biondini, S. Chakravarty, “Soliton solutions of the Kadomtsev–Petviashvili II equation”, J. Math. Phys., 47:3 (2006), 033514, 25 pp. | DOI | MR

[12] Y. Kodama, “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43:43, 434004, 54 pp., arXiv: 1004.4607 | DOI | Zbl

[13] Y. Kodama, L. Williams, KP solitons and total positivity for the Grassmannian, arXiv: 1106.0023

[14] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, eds. A. Nagai, J. Nimmo, C. Gilson, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR | Zbl

[15] Y. Kodama, KP Solitons and the Grassmannians: Combinatorics and Geometry of Two-Dimensional Wave Patterns, SpringerBriefs in Mathematical Physics, 22, Springer, Singapore, 2017 | DOI | MR

[16] J. Cen, F. Correa, A. Fring, “Time-delay and reality conditions for complex solitons”, J. Math. Phys., 58:3 (2017), 032901 | DOI | MR

[17] F. Correa, A. Fring, “Regularized degenerate multi-solitons”, JHEP, 09 (2016), 008, 15 pp. | DOI | MR

[18] J. Cen, A. Fring, “Complex solitons with real energies”, J. Phys. A: Math. Theor., 49:36 (2016), 365202, 15 pp. | DOI | MR | Zbl

[19] G. Lévai, M. Znojil, “The interplay of supersymmetry and $\mathcal{PT}$ symmetry in quantum mechanics: a case study for the Scarf II potential”, J. Phys. A: Math. Gen., 35:41 (2002), 8793–8804 | DOI | MR

[20] S. Chakravarty, Y. Kodama, “A generating function for the $N$-soliton solutions of the Kadomtsev–Petviashvili II equation”, Special Functions and Orthogonal Polynomials, Contemporary Mathematics, 471, eds. D. Dominici, R. S. Maier, AMS, Providence, RI, 2008, 47–67 | DOI | MR

[21] P. Galashin, P. Pylyavskyy, “Ising model and the positive orthogonal Grassmannian”, Duke Math. J., 169:10 (2020), 1877–1942 | DOI | MR

[22] J.-H. Chang, Real line solitons of the BKP equation, arXiv: 2303.02385

[23] M. Wadati, “Construction of parity-time symmetric potential through the soliton theory”, J. Phys. Soc. Japan, 77:7 (2008), 074005, 4 pp. | DOI