Mots-clés : soliton.
@article{TMF_2024_219_2_a4,
author = {G. U. Urazboev and I. I. Baltaeva and A. K. Babadjanova},
title = {Soliton solutions of the~negative-order nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--273},
year = {2024},
volume = {219},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a4/}
}
TY - JOUR AU - G. U. Urazboev AU - I. I. Baltaeva AU - A. K. Babadjanova TI - Soliton solutions of the negative-order nonlinear Schrödinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 263 EP - 273 VL - 219 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a4/ LA - ru ID - TMF_2024_219_2_a4 ER -
%0 Journal Article %A G. U. Urazboev %A I. I. Baltaeva %A A. K. Babadjanova %T Soliton solutions of the negative-order nonlinear Schrödinger equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 263-273 %V 219 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a4/ %G ru %F TMF_2024_219_2_a4
G. U. Urazboev; I. I. Baltaeva; A. K. Babadjanova. Soliton solutions of the negative-order nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a4/
[1] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[2] A. Hasegawa, M. Matsumoto, Optical Solitons in Fibers, Springer Series in Photonics, 7, Springer, Berlin, 2002 | DOI
[3] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I. Anomalous dispersion”, Appl. Phys. Lett., 23:3 (1973), 142–144 | DOI
[4] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. II. Normal dispersion”, Appl. Phys. Lett., 23:4 (1973), 171–172 | DOI
[5] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI | MR
[6] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR
[7] J. M. Verosky, “Negative powers of Olver recursion operators”, J. Math. Phys., 32:7 (1991), 1733–1736 | DOI | MR
[8] Z. J. Qiao, E. G. Fan, “Negative-order Korteweg–de Vries equations”, Phys. Rev. E, 86:1 (2012), 016601, 20 pp. | DOI
[9] J. B. Chen, “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, Internat. J. Geom. Methods Modern Phys., 15:3 (2018), 1850040, 34 pp. | DOI | MR
[10] Z. J. Qiao, J. B. Li, “Negative-order KdV equation with both solitons and kink wave solutions”, Europhys. Lett., 94:5 (2011), 50003, 5 pp. | DOI
[11] S.-L. Zhao, Y.-Y. Sun, “A discrete negative order potential Korteweg–de Vries equation”, Z. Naturforsch. A, 71:12 (2016), 1151–1158 | DOI
[12] M. Rodriguez, J. Li, Z. Qiao, “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48, 20 pp. | DOI
[13] A.-M. Wazwaz, “Negative-order KdV equations in $(3+1)$ dimensions by using the KdV recursion operator”, Waves Random Complex Media, 27:4 (2017), 768–778 | DOI | MR
[14] G. U. Urazboev, I. I. Baltaeva, O. B. Ismoilov, “Integrirovanie uravneniya Kortevega–de Friza otritsatelnogo poryadka metodom obratnoi zadachi rasseyaniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:3 (2023), 523–533 | MR
[15] G. U. Urazboev, M. M. Khasanov, “Integrirovanie uravneniya Kortevega–de Friza otritsatelnogo poryadka s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 228–239 | DOI | MR
[16] G. U. Urazboev, M. M. Khasanov, I. I. Baltaeva, “Integrirovanie uravneniya Kortevega–de Friza otritsatelnogo poryadka s istochnikom spetsialnogo vida”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 31–43 | DOI | MR
[17] M. M. Khasanov, I. D. Rakhimov, “Integrirovanie uravneniya KdF otritsatelnogo poryadka so svobodnym chlenom v klasse periodicheskikh funktsii”, Chebyshevskii sb., 24:2 (2023), 266–275 | DOI
[18] J. Wang, L. Tian, Y. Zhang, “Breather solutions of a negative order modified Korteweg–de Vries equation and its nonlinear stability”, Phys. Lett. A, 383:15 (2019), 1689–1697 | DOI | MR
[19] A.-M. Wazwaz, “A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions”, Waves Random Complex Media, 28:3 (2018), 533–543 | DOI | MR
[20] G. U. Urazboev, A. B. Yakhshimuratov, M. M. Khasanov, “Integrirovanie modifitsirovannogo uravneniya Kortevega–de Friza otritsatelnogo poryadka v klasse periodicheskikh funktsii”, TMF, 217:2 (2023), 317–328 | DOI | DOI | MR
[21] M. I. Ismailov, C. Sabaz, Inverse scattering method for nonlinear Klein–Gordon equation coupled with a scalar field, arXiv: 2212.02092
[22] J. Ji, S.-L. Zhao, D.-J. Zang, “Soliton solutions for a negative order AKNS equation”, Commun. Theor. Phys., 50:5 (2008), 1033–1035 | DOI | MR
[23] L. M. Ling, B.-F. Feng, Z. N. Zhu, “General soliton solutions to a coupled Fokas–Lenells equation”, Nonlinear Anal. Real World Appl., 40 (2018), 185–214 | DOI | MR
[24] V. S. Gerdjikov, R. I. Ivanov, “Multicomponent Fokas–Lenells equations on Hermitian symmetric spaces”, Nonlinearity, 34:2 (2021) | MR
[25] M. J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons, Cambridge Texts in Applied Mathematics, 47, Cambridge Univ. Press, New York, 2011 | DOI | MR