On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 249-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a $(1+1)$-dimensional thermal–electrical model of semiconductor heating in an electric field. For the corresponding initial-boundary value problem, we prove the existence of a classical solution that cannot be continued in time and obtain sufficient conditions for the blow-up of the solution in a finite time.
Keywords: nonlinear Sobolev-type equations, solution blow-up, local solvability, nonlinear capacity, blow-up time estimates.
@article{TMF_2024_219_2_a3,
     author = {M. V. Artemeva and M. O. Korpusov},
     title = {On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal{\textendash}electrical model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--262},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/}
}
TY  - JOUR
AU  - M. V. Artemeva
AU  - M. O. Korpusov
TI  - On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 249
EP  - 262
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/
LA  - ru
ID  - TMF_2024_219_2_a3
ER  - 
%0 Journal Article
%A M. V. Artemeva
%A M. O. Korpusov
%T On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 249-262
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/
%G ru
%F TMF_2024_219_2_a3
M. V. Artemeva; M. O. Korpusov. On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/

[1] A. V. Timoshenko, D. V. Kaleev, A. Yu. Perlov i dr., “Sravnitelnyi analiz analiticheskikh i empiricheskikh metodik otsenki tekuschikh parametrov nadezhnosti radiolokatsionnykh kompleksov monitoringa”, Izv. vuzov. Elektronika, 25:3 (2020), 244–254 | DOI

[2] M. O. Korpusov, “O razrushenii resheniya uravneniya, rodstvennogo uravneniyu Gamiltona–\allowbreakYakobi”, Matem. zametki, 93:1 (2013), 81–95 | DOI | DOI | MR | Zbl

[3] M. O. Korpusov, “O razrushenii resheniya nelokalnogo uravneniya s gradientnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, vyp. 11, 2012, no. 5(264), 43–53

[4] M. O. Korpusov, A. A. Panin, A. E. Shishkov, “O kriticheskom pokazatele ‘mgnovennoe razrushenie’ versus ‘lokalnaya razreshimost’ v zadache Koshi dlya modelnogo uravneniya sobolevskogo tipa”, Izv. RAN. Ser. matem., 85:1 (2021), 118–153 | DOI | DOI | MR

[5] M. O. Korpusov, A. Yu. Perlov, A. V. Timoshenko, R. S. Shafir, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii teplo-elektricheskoi modeli”, Matem. zametki, 114:5 (2023), 759–772 | DOI | DOI

[6] M. O. Korpusov, A. Yu. Perlov, A. V. Timoshenko, R. S. Shafir, “O globalnoi vo vremeni razreshimosti odnoi nelineinoi sistemy uravnenii teplo-elektricheskoi modeli s kvadratichnoi nelineinostyu”, TMF, 217:2 (2023), 378–390 | DOI | DOI | MR

[7] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005 | MR

[8] F. G. Bass, V. S. Bochkov, Yu. S. Gurevich, Elektrony i fonony v ogranichennykh poluprovodnikakh, Nauka, M., 1984

[9] V. L. Bonch-Bruevich, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1990

[10] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR

[11] A. A. Panin, “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Matem. zametki, 97:6 (2015), 884–903 | DOI | DOI | MR