On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 249-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $(1+1)$-dimensional thermal–electrical model of semiconductor heating in an electric field. For the corresponding initial-boundary value problem, we prove the existence of a classical solution that cannot be continued in time and obtain sufficient conditions for the blow-up of the solution in a finite time.
Keywords: nonlinear Sobolev-type equations, solution blow-up, local solvability, nonlinear capacity, blow-up time estimates.
@article{TMF_2024_219_2_a3,
     author = {M. V. Artemeva and M. O. Korpusov},
     title = {On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {219},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/}
}
TY  - JOUR
AU  - M. V. Artemeva
AU  - M. O. Korpusov
TI  - On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 249
EP  - 262
VL  - 219
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/
LA  - ru
ID  - TMF_2024_219_2_a3
ER  - 
%0 Journal Article
%A M. V. Artemeva
%A M. O. Korpusov
%T On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 249-262
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/
%G ru
%F TMF_2024_219_2_a3
M. V. Artemeva; M. O. Korpusov. On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a3/