Particle creation in cosmological space–time by a time-varying electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 372-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the semiclassical approach to solve the Klein–Gordon and Dirac equations in the presence of a time-varying electric field. Our objective is to calculate the density of particle creation in a cosmological anisotropic Bianchi-I space–time. We demonstrate that when the electric interaction is proportional to the Ricci scalar of curved space–time, the distribution of particles subjected to the electric field transforms into a thermal state.
Keywords: cosmological space–time, Bogoliubov transformation, particle creation.
@article{TMF_2024_219_2_a11,
     author = {H. Rezki and S. Zaim},
     title = {Particle creation in cosmological space{\textendash}time by a~time-varying electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--388},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a11/}
}
TY  - JOUR
AU  - H. Rezki
AU  - S. Zaim
TI  - Particle creation in cosmological space–time by a time-varying electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 372
EP  - 388
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a11/
LA  - ru
ID  - TMF_2024_219_2_a11
ER  - 
%0 Journal Article
%A H. Rezki
%A S. Zaim
%T Particle creation in cosmological space–time by a time-varying electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 372-388
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a11/
%G ru
%F TMF_2024_219_2_a11
H. Rezki; S. Zaim. Particle creation in cosmological space–time by a time-varying electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 372-388. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a11/

[1] L. Parker, “Particle creation in expanding universes”, Phys. Rev. Lett., 21:8 (1968), 562–564 | DOI

[2] L. Parker, “Quantized fields and particle creation in expanding universes. I”, Phys. Rev., 183:5 (1969), 1057–1068 ; “Quantized fields and particle creation in expanding universes. II”, Phys. Rev. D, 3:2 (1971), 346–356 ; Erratum, 3:10, 2546–2546 | DOI | DOI | DOI

[3] N. J. Papastamatiou, L. Parker, “Asymmetric creation of matter and antimatter in the expanding universe”, Phys. Rev. D, 19:8 (1979), 2283–2299 | DOI | MR

[4] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR

[5] A. I. Nikishov, “Obrazovanie par postoyannym vneshnim polem”, ZhETF, 57:4 (1969), 1210–1216

[6] A. I. Nikishov, “Problemy intensivnogo vneshnego polya v kvantovoi elektrodinamike”, Kvantovaya elektrodinamika yavlenii v intensivnom pole, Trudy FIAN, 111, ed. V. L. Ginzburg, Nauka, M., 1979, 152–271 | DOI | MR

[7] D. M. Gitman, “Processes of arbitrary order in quantum electrodynamics with a pair-creating external field”, J. Phys. A: Math. Gen., 10:11 (1977), 2007–2020 | DOI

[8] E. S. Fradkin, D. M. Gitman, “Furry picture for quantum electrodynamics with pair-creating external field”, Fortschr. Phys., 29:9 (1981), 381–411 | DOI

[9] D. M. Gitman, E. S. Fradkin, Sh. M. Shvartsman, Kvantovaya elektrodinamika s nestabilnym vakuumom, Nauka, M., 1991 | MR

[10] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985 | DOI

[11] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge, 1982 | DOI | MR

[12] A. A. Grib, C. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Atomizdat, M., 1988

[13] S. P. Gavrilov, G. M. Gitman, “Vacuum instability in external fields”, Phys. Rev. D, 53:12 (1996), 7162–7175 | DOI

[14] S. P. Gavrilov, G. M. Gitman, J. L. Tomazelli, “Density matrix of a quantum field in a particle-creating background”, Nucl. Phys. B, 795:3 (2008), 645–677 | DOI | MR

[15] R. Ruffini, G. Vereshchagin, S.-S. Xue, “Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes”, Phys. Rep., 487:1–4 (2010), 1–140 | DOI

[16] F. Gelis, N. Tanji, “Schwinger mechanism revisited”, Prog. Part. Nucl. Phys., 87 (2016), 1–49 | DOI

[17] S. P. Gavrilov, D. M. Gitman, “Quantization of charged fields in the presence of critical potential steps”, Phys. Rev. D, 93:4 (2016), 045002, 46 pp. ; “Vacuum instability in slowly varying electric fields”, 95:7 (2017), 076013, 19 pp. | DOI | MR | DOI

[18] G. V. Dunne, “New strong-field QED effects at extreme light infrastructure”, Eur. Phys. J. D, 55:2 (2009), 327–340 | DOI

[19] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys., 81:1 (2009), 109–162 | DOI

[20] N. M. R. Peres, “The transport properties of graphene: An introduction”, Rev. Mod. Phys., 82:3 (2010), 2673–2700 | DOI

[21] M. A. H. Vozmediano, M. I. Katsnelson, F. Guines, “Gauge fields in graphene”, Phys. Rep., 496:4–5 (2010), 109–148, arXiv: 1003.5179 | DOI | MR

[22] S. Das Sarma, S. Adam, E. H. Hwang, E. Rossi, “Electronic transport in two-dimensional graphene”, Rev. Mod. Phys., 83:2 (2011), 407–470 | DOI

[23] N. Birrell, P. Devis, Kvantovye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | DOI | MR

[24] N. B. Narozhnyi, A. I. Nikishov, “Prosteishie protsessy v elektricheskom pole, porozhdayuschem pary”, YaF, 11:5 (1970), 1072–1077

[25] G. Dunne, T. Hall, “QED effective action in time dependent electric backgrounds”, Phys. Rev. D, 58:10 (1998), 105022, 13 pp. | DOI

[26] N. B. Narozhnyi, A. I. Nikishov, “Obrazovanie par periodicheskim elektricheskim polem”, ZhETF, 65:3 (1974), 862–874

[27] V. M. Mostepanenko, V. M. Frolov, “Rozhdenie chastits iz vakuuma odnorodnym elektricheskim polem s periodicheskoi zavisimostyu ot vremeni”, YaF, 19:4 (1974), 885–896

[28] T. C. Adorno, S. P. Gavrilov, D. M. Gitman, “Particle creation from the vacuum by an exponentially decreasing electric field”, Phys. Scr., 90:7 (2015), 074005, 8 pp. ; “Particle creation by peak electric field”, Eur. Phys. J. C, 76:8 (2016), 447, 13 pp. ; “Exactly solvable cases in QED with $t$-electric potential steps”, Internat. J. Modern Phys. A, 32:18 (2017), 1750105, 53 pp. | DOI | DOI | DOI | MR

[29] T. C. Adorno, R. Ferreira, S. P. Gavrilov, D. M. Gitman, “Peculiarities of pair creation by a peak electric field”, Russ. Phys. J., 60:3 (2017), 417–426 | DOI

[30] T. N. Tomaras, N. C. Tsamis, R. P. Woodard, “Pair creation and axial anomaly in light-cone QED${}_2$”, JHEP, 11 (2001), 008, 31 pp. | DOI

[31] V. G. Bagrov, D. M. Gitman, I. M. Ternov, V. R. Khalilov, V. N. Shapovalov, Tochnye resheniya relyativistskikh volnovykh uravnenii, Nauka, Novosibirsk, 1982 | MR

[32] V. G. Bagrov, D. M. Gitman, Dirac Equation and its Solutions, De Gruyter Studies in Mathematical Physics, 4, de Gruyter, Berlin, 2014 | MR

[33] T. C. Adorno, S. P. Gavrilov, D. M. Gitman, “Violation of vacuum stability by inverse square electric fields”, Eur. Phys. J. C, 78:12 (2018), 1021, 17 pp. | DOI

[34] V. M. Villalba, W. Greiner, “Creation of Dirac particles in the presence of a constant electric field in an anisotropic Bianchi I universe”, Modern Phys. Lett. A, 17:28 (2002), 1883–1891 | DOI

[35] S. P. Gavrilov, D. M. Gitman, N. Yokomizo, “Dirac fermions in strong electric field and quantum transport in graphene”, Phys. Rev. D, 86:12 (2012), 125022, 25 pp. | DOI

[36] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, London Mathematical Society Student Texts, 17, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR

[37] D. M. Chitre, J. B. Hartle, “Path-integral quantization and cosmological particle production: An example”, Phys. Rev. D, 16:2 (1977), 251–260 | DOI | MR

[38] I. L. Bukhbinder, “Rozhdenie skalyarnykh chastits v kosmologicheskikh modelyakh”, Izv. VUZ. Fizika, 1980, no. 7, 3–6 | DOI

[39] S. P. Gavrilov, D. M. Gitman, S. D. Odintsov, “Quantum scalar field in the FRW universe with a constant electromagnetic background”, Internat. J. Modern Phys. A, 12:27 (1997), 4837–4867 | DOI | MR

[40] V. M. Villalba, “Particle creation in a cosmological anisotropic universe”, Internat. J. Theor. Phys., 36:6 (1997), 1321–1328 | DOI

[41] V. M. Villalba, W. Greiner, “Creation of scalar and Dirac particles in the presence of a time varying electric field in an anisotropic Bianchi type I universe”, Phys. Rev. D, 65:2 (2002), 025007, 6 pp. | DOI

[42] V. M. Villalba, “Creation of scalar particles in the presence of a constant electric field in an anisotropic cosmological universe”, Phys. Rev. D, 60:12 (1999), 127501, 4 pp. | DOI

[43] N. Mebarki, L. Khodja, S. Zaim, “On the noncommutative space-time Bianchi I universe and particles pair creation process”, Electron. J. Theor. Phys., 7:23 (2010), 181–196

[44] S. Zaim, “Anisotropic universe space-time non-commutativity and scalar particle creation in the presence of a constant electric field”, Romanian J. Phys., 61:5–6 (2016), 743–754

[45] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Fizmatlit, M.–L., 1963 | MR | Zbl

[46] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[47] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | DOI | MR

[48] L. O. Pimentel, F. Pineda, “Particle creation in some LRS Bianchi I models”, Gen. Rel. Grav., 53:7 (2021), 62, 15 pp. | DOI | MR

[49] J. M. Cohen, B. Kuharetz, “Relativistic hydrogen atom: Wave equation in Whittaker form”, J. Math. Phys., 34:11 (1993), 4964–4974 | DOI | MR