Mots-clés : inverse Laplace transform, Padé approximation.
@article{TMF_2024_219_2_a10,
author = {Y. Goutal and F. Serdouk and A. Boumali and M. L. Benkhedir},
title = {Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {352--371},
year = {2024},
volume = {219},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/}
}
TY - JOUR AU - Y. Goutal AU - F. Serdouk AU - A. Boumali AU - M. L. Benkhedir TI - Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 352 EP - 371 VL - 219 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/ LA - ru ID - TMF_2024_219_2_a10 ER -
%0 Journal Article %A Y. Goutal %A F. Serdouk %A A. Boumali %A M. L. Benkhedir %T Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 352-371 %V 219 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/ %G ru %F TMF_2024_219_2_a10
Y. Goutal; F. Serdouk; A. Boumali; M. L. Benkhedir. Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 352-371. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/
[1] F. W. Schmidlin, “Theory of multiple trapping”, Solid State Commun., 22:7 (1977), 451–453 | DOI
[2] F. W. Schmidlin, “Kinetic theory of hopping transport. I. The formalism and its relationship to random walks”, Philos. Mag. B, 41:5 (1980), 535–570 | DOI
[3] J. Noolandi, “Equivalence of multiple-trapping model and time-dependent random walk”, Phys. Rev. B, 16:10 (1977), 4474–4479 | DOI
[4] O. L. Curtis, Jr., J. R. Srour, “The multiple-trapping model and hole transport in SiO${}_2$”, J. Appl. Phys., 48:9 (1977), 3819–3828 | DOI
[5] T. Tiedje, A. Rose, “A physical interpretation of dispersive transport in disordered semiconductors”, Solid State Commun., 37:1 (1981), 49–52 | DOI
[6] E. A. Schiff, “Trap-controlled dispersive transport and exponential band tails in amorphous silicon”, Phys. Rev. B, 24:10 (1981), 6189–6192 | DOI
[7] E. A. Schiff, “Transit-time measurements of charge carriers in disordered silicons: Amorphous, microcrystalline and porous”, Philos. Mag., 89:28–30 (2009), 2505–2518 | DOI
[8] V. Uchaikin, R. Sibatov, Fractional Kinetics in Space: Anomalous Transport Models, World Sci., Singapore, 2018 | DOI | MR
[9] V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems, World Sci., Singapore, 2022 | DOI
[10] V. V. Uchaikin, R. T. Sibatov, “Anomalous kinetics of charge carriers in disordered solids: fractional derivative approach”, Internat. J. Modern Phys. B, 26:31 (2012), 1230016, 34 pp. | DOI | Zbl
[11] V. V. Uchaikin, R. Sibatov, D. Uchaikin, “Memory regeneration phenomenon in dielectrics: the fractional derivative approach”, Phys. Scr., 2009:T136 (2009), 014002, 6 pp. | DOI
[12] H. Scher, E. W. Montroll, “Anomalous transit-time dispersion in amorphous solids”, Phys. Rev. B, 12:6 (1975), 2455–2477 | DOI
[13] G. Pfister, H. Scher, “Dispersive (non-Gaussian) transient transport in disordered solids”, Adv. Phys., 27:5 (1978), 747–798 | DOI
[14] A. I. Rudenko, V. I. Arkhipov, “Drift and diffusion in materials with traps. I. Quasi-equilibrium transport regime”, Philos. Mag. B., 45:2 (1982), 177–187 | DOI
[15] S. D. Baranovskii, I. P. Zvyagin, H. Cordes, S. Yamasaki, P. Thomas, “Electronic transport in disordered organic and inorganic semiconductors”, J. Non-Cryst. Solids, 299–302:1 (2002), 416–419 | DOI
[16] V. R. Nikitenko, H. von Seggern, H. Bässler, “Non-equilibrium transport of charge carriers in disordered organic materials”, J. Phys.: Condens. Matter, 19:13 (2007), 136210, 15 pp. | DOI
[17] V. I. Arkhipov, A. I. Rudenko, “Drift and diffusion in materials with traps II. Non-equilibrium transport regime”, Philos. Mag. B, 45:2 (1982), 189–207 | DOI
[18] V. I. Arkhipov, M. S. Iovu, A. I. Rudenko, S. D. Shutov, “Multiple trapping model: approximate and exact solutions”, Solid State Commun., 62:5 (1987), 339–340 | DOI
[19] V. I. Arkhipov, A. I. Rudenko, “On the study of amorphous material band structure by current injection”, Phys. Lett., 61:1 (1977), 55–57 | DOI
[20] E. V. Emelianova, M. L. Benkhedir, M. Brinza, G. J. Adriaenssens, “Analysis of electron time-of-flight photocurrent data from $a$-Se”, J. Appl. Phys., 99:8 (2006), 083702 | DOI
[21] H. Naito, J. Ding, M. Okuda, “Determination of localized-state distributions in amorphous semiconductors from transient photoconductivity”, Appl. Phys. Lett., 64:14 (1994), 1830–1832 | DOI
[22] H. Naito, M. Okuda, “Simple analysis of transient photoconductivity for determination of localized-state distributions in amorphous semiconductors using Laplace transform”, J. Appl. Phys., 77:7 (1995), 3541–3542 | DOI
[23] H. Naito, T. Nagase, T. Ishii, M. Okuda, T. Kawaguchi, S. Maruno, “Density of states in amorphous semiconductors determined from transient photoconductivity experiment: Computer simulation and experiment”, J. Non-Cryst. Solids, 198–200:1 (1996), 363–366 | DOI
[24] T. Nagase, Ko-hei Kishimoto, H. Naito, “High resolution measurement of localized-state distributions from transient photoconductivity in amorphous and polymeric semiconductors”, J. Appl. Phys., 86:9 (1999), 5026–5035 | DOI
[25] T. Nagase, H. Naito, “Localized-state distributions in molecularly doped polymers determined from time-of-flight transient photocurrent”, J. Appl. Phys., 88:1 (2000), 252–259 | DOI
[26] T. Yoshikawa, T. Nagase, T. Kobayashi, S. Murakami, H. Naito, “Analysis of time-of-flight transient photocurrent in organic semiconductors with coplanar-blocking-electrodes configuration”, Thin Solid Films, 516:9 (2008), 2595–2599 | DOI
[27] H. Fujimura, T. Nagase, H. Naito, Photoconductivity and Photoconductive Materials: Fundamentals, Techniques and Applications, Wiley Series in Materials for Electronic Optoelectronic Applications, ed. S. O. Kasap, John Wiley Sons, New York, 2022
[28] M. J. Gueorguieva, C. Main, S. Reynolds, R. Brüggemann, C. Longeaud, “Probing localized states distributions in semiconductors by Laplace transform transient photocurrent spectroscopy”, J. Non-Cryst. Solids, 299–302:1 (2002), 541–545 | DOI
[29] M. L. Benkhedir, M. S. Aida, G. J. Adriaenssens, “Defect levels in the band gap of amorphous selenium”, J. Non-Cryst. Solids, 344:3 (2004), 193–198 | DOI
[30] M. Brinza, G. J. Adriaenssens, “Electronic properties of hydrogenated amorphous silicon prepared in expanding thermal plasmas”, J. Optoelectron. Adv. Mater., 8:1 (2006), 2028–2034
[31] F. Serdouk, M. L. Benkhedir, “Density of states in pure and As doped amorphous selenium determined from transient photoconductivity using Laplace-transform method”, Phys. B, 459 (2015), 122–128 | DOI
[32] F. Serdouk, A. Boumali, A. Makhlouf, M. L. Benkhedir, “Solutions of $q$-deformed multiple-trapping model for charge carrier transport from time-of-flight transient photo-current in amorphous semiconductors”, Rev. Mexicana Fis., 66:5 (2020), 643–655 | DOI | MR
[33] F. Serdouk, A. Boumali, R. T. Sibatov, “Fractional model of multiple trapping with charge leakage: transient photoconductivity and transit-time dispersion”, Fractal Fract., 7:3 (2023), 243, 11 pp. | DOI
[34] J. K. E. Tunaley, “Some properties of the asymptotic solutions of the Montroll–Weiss equation”, J. Stat. Phys., 12:1 (1975), 1–10 | DOI
[35] E. W. Montroll, H. Scher, “Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries”, J. Stat. Phys., 9:2 (1973), 101–135 | DOI
[36] J. Bisquert, “Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk”, Phys. Rev. Lett., 91:1 (2003), 010602, 4 pp. | DOI
[37] J. Bisquert, “Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination”, Phys. Rev. E., 72:1 (2005), 011109, 6 pp. | DOI
[38] R. T. Sibatov, V. V. Uchaikin, “Drobno-differentsialnyi podkhod k opisaniyu dispersionnogo perenosa v poluprovodnikakh”, UFN, 179:10 (2009), 1079–1104 | DOI
[39] R. T. Sibatov, V. V. Uchaikin, “Fractional differential kinetics of charge transport in unordered semiconductors”, Semiconductors, 41:3 (2007), 335–340 | DOI
[40] R. T. Sibatov, V. V. Uchaikin, “Fractional theory for transport in disordered semiconductors”, Commun. Nonlinear Sci. Numer. Simul., 13:4 (2008), 715–727 | DOI | MR
[41] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Nonlinear Physical Science, eds. A. C. J. Luo, N. H. Ibragimov, Springer, Berlin, Heidelberg, 2013 | DOI | MR
[42] R. T. Sibatov, V. V. Uchaikin, “Truncated Lévy statistics for dispersive transport in disordered semiconductors”, Commun. Nonlinear Sci. Numer. Simul., 16:12 (2011), 4564–4572 | DOI | MR
[43] R. T. Sibatov, E. V. Morozova, “Mnogokratnyi zakhvat na grebeshkovoi strukture kak model elektronnogo transporta v neuporyadochennykh nanostrukturirovannykh poluprovodnikakh”, ZhETF, 147:5 (2015), 993–1004 | DOI
[44] M. L. Benkhedir, M. Brinza, G. J. Adriaenssens, “Electronic density of states in amorphous selenium”, J. Phys.: Condens. Matter, 16:44 (2004), S5253—S5264 | DOI
[45] S. Raoux, F. Xiong, M. Wuttig, E. Pop, “Phase change materials and phase change memory”, MRS Bull., 39:3 (2014), 703–710 | DOI
[46] I. Vlakh, K. Singkhal, Mashinnye metody analiza i proektirovaniya elektronnykh skhem, Radio i svyaz, M., 1988
[47] R. E. Ziemer, W. H. Tranter, D. R. Fannin, Signals and Systems: Continous and Discrete, Prentice Hall, Upper Saddle River, NJ, 1998
[48] J. Vlach, “Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters”, J. Franklin Inst., 288:2 (1969), 99–113 | DOI
[49] K. Singhal, J. Vlach, “Computation of time domain response by numerical inversion of the Laplace transform”, J. Franklin Inst., 299:2 (1975), 109–126 ; “Method for computing time response of systems described by transfer functions”, 311:2 (1981), 123–130 | DOI | MR | DOI | MR
[50] K. Singhal, J. Vlach, M. Nakhla, “Absolutely stable high order method for time domain solution of networks”, Arch. Elektr. Übertragungstech., 30:4 (1976), 157–166 | MR
[51] B. Davis, B. Martin, “Numerical inversion of the Laplace transform: a survey and comparison of methods”, J. Comput. Phys., 33:1 (1979), 1–32 | DOI | MR