Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 352-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The use of the multiple-trapping (MT) model to comprehend the transport of nonequilibrium charge carriers in amorphous semiconductors has proven highly effective. Under specific conditions, this model generates anomalous diffusion equations characterized by fractional time derivatives. This underscores the utility of the MT model in interpreting fractional transport equations, establishing initial and boundary conditions, and developing numerical methods for solving fractional kinetic equations. Also, this work provides a concise overview of applying fractional MT equations to address challenges in time-of-flight (TOF) experiments. Furthermore, it delves into the connection between the MT model and generalized fractional kinetic equations. In addition, the study introduces analytic approximate solutions of the fractional diffusion equation, incorporating MT phenomena and employing Laplace transforms. This approach is suitable for analyzing both the pre- and post-regimes of TOF transient current, applicable to amorphous semiconductors that display either nondispersive or dispersive transport characteristics. The effectiveness of this method is illustrated through numerical simulations of TOF transient current using the inverse Laplace transform technique with the Padé approximation. The practicality of the method is confronted with the experimental data obtained from thin films of amorphous selenium (a-Se), and the results of this confrontation are deemed satisfactory. The results of this study offer a new promising perspective for the two following reasons. First, employing fractional calculus to address the MT equations introduces a distinct approach compared to methodologies in the existing literature. This is substantiated by the inclusion of memory effects in fractional calculus, implying that the present solution is influenced by preceding time steps. Second, the numerical results demonstrate good agreement with experimental data. Consequently, the introduction of fractional calculus has the potential to offer fresh insights into the behavior of charge carriers in amorphous semiconductors.
Keywords: amorphous semiconductor, fractional derivative, multiple trapping model, transient photoconductivity
Mots-clés : inverse Laplace transform, Padé approximation.
@article{TMF_2024_219_2_a10,
     author = {Y. Goutal and F. Serdouk and A. Boumali and M. L. Benkhedir},
     title = {Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--371},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/}
}
TY  - JOUR
AU  - Y. Goutal
AU  - F. Serdouk
AU  - A. Boumali
AU  - M. L. Benkhedir
TI  - Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 352
EP  - 371
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/
LA  - ru
ID  - TMF_2024_219_2_a10
ER  - 
%0 Journal Article
%A Y. Goutal
%A F. Serdouk
%A A. Boumali
%A M. L. Benkhedir
%T Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 352-371
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/
%G ru
%F TMF_2024_219_2_a10
Y. Goutal; F. Serdouk; A. Boumali; M. L. Benkhedir. Fractional multiple trapping model of time-of-flight transient photocurrents in amorphous semiconductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 352-371. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a10/

[1] F. W. Schmidlin, “Theory of multiple trapping”, Solid State Commun., 22:7 (1977), 451–453 | DOI

[2] F. W. Schmidlin, “Kinetic theory of hopping transport. I. The formalism and its relationship to random walks”, Philos. Mag. B, 41:5 (1980), 535–570 | DOI

[3] J. Noolandi, “Equivalence of multiple-trapping model and time-dependent random walk”, Phys. Rev. B, 16:10 (1977), 4474–4479 | DOI

[4] O. L. Curtis, Jr., J. R. Srour, “The multiple-trapping model and hole transport in SiO${}_2$”, J. Appl. Phys., 48:9 (1977), 3819–3828 | DOI

[5] T. Tiedje, A. Rose, “A physical interpretation of dispersive transport in disordered semiconductors”, Solid State Commun., 37:1 (1981), 49–52 | DOI

[6] E. A. Schiff, “Trap-controlled dispersive transport and exponential band tails in amorphous silicon”, Phys. Rev. B, 24:10 (1981), 6189–6192 | DOI

[7] E. A. Schiff, “Transit-time measurements of charge carriers in disordered silicons: Amorphous, microcrystalline and porous”, Philos. Mag., 89:28–30 (2009), 2505–2518 | DOI

[8] V. Uchaikin, R. Sibatov, Fractional Kinetics in Space: Anomalous Transport Models, World Sci., Singapore, 2018 | DOI | MR

[9] V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems, World Sci., Singapore, 2022 | DOI

[10] V. V. Uchaikin, R. T. Sibatov, “Anomalous kinetics of charge carriers in disordered solids: fractional derivative approach”, Internat. J. Modern Phys. B, 26:31 (2012), 1230016, 34 pp. | DOI | Zbl

[11] V. V. Uchaikin, R. Sibatov, D. Uchaikin, “Memory regeneration phenomenon in dielectrics: the fractional derivative approach”, Phys. Scr., 2009:T136 (2009), 014002, 6 pp. | DOI

[12] H. Scher, E. W. Montroll, “Anomalous transit-time dispersion in amorphous solids”, Phys. Rev. B, 12:6 (1975), 2455–2477 | DOI

[13] G. Pfister, H. Scher, “Dispersive (non-Gaussian) transient transport in disordered solids”, Adv. Phys., 27:5 (1978), 747–798 | DOI

[14] A. I. Rudenko, V. I. Arkhipov, “Drift and diffusion in materials with traps. I. Quasi-equilibrium transport regime”, Philos. Mag. B., 45:2 (1982), 177–187 | DOI

[15] S. D. Baranovskii, I. P. Zvyagin, H. Cordes, S. Yamasaki, P. Thomas, “Electronic transport in disordered organic and inorganic semiconductors”, J. Non-Cryst. Solids, 299–302:1 (2002), 416–419 | DOI

[16] V. R. Nikitenko, H. von Seggern, H. Bässler, “Non-equilibrium transport of charge carriers in disordered organic materials”, J. Phys.: Condens. Matter, 19:13 (2007), 136210, 15 pp. | DOI

[17] V. I. Arkhipov, A. I. Rudenko, “Drift and diffusion in materials with traps II. Non-equilibrium transport regime”, Philos. Mag. B, 45:2 (1982), 189–207 | DOI

[18] V. I. Arkhipov, M. S. Iovu, A. I. Rudenko, S. D. Shutov, “Multiple trapping model: approximate and exact solutions”, Solid State Commun., 62:5 (1987), 339–340 | DOI

[19] V. I. Arkhipov, A. I. Rudenko, “On the study of amorphous material band structure by current injection”, Phys. Lett., 61:1 (1977), 55–57 | DOI

[20] E. V. Emelianova, M. L. Benkhedir, M. Brinza, G. J. Adriaenssens, “Analysis of electron time-of-flight photocurrent data from $a$-Se”, J. Appl. Phys., 99:8 (2006), 083702 | DOI

[21] H. Naito, J. Ding, M. Okuda, “Determination of localized-state distributions in amorphous semiconductors from transient photoconductivity”, Appl. Phys. Lett., 64:14 (1994), 1830–1832 | DOI

[22] H. Naito, M. Okuda, “Simple analysis of transient photoconductivity for determination of localized-state distributions in amorphous semiconductors using Laplace transform”, J. Appl. Phys., 77:7 (1995), 3541–3542 | DOI

[23] H. Naito, T. Nagase, T. Ishii, M. Okuda, T. Kawaguchi, S. Maruno, “Density of states in amorphous semiconductors determined from transient photoconductivity experiment: Computer simulation and experiment”, J. Non-Cryst. Solids, 198–200:1 (1996), 363–366 | DOI

[24] T. Nagase, Ko-hei Kishimoto, H. Naito, “High resolution measurement of localized-state distributions from transient photoconductivity in amorphous and polymeric semiconductors”, J. Appl. Phys., 86:9 (1999), 5026–5035 | DOI

[25] T. Nagase, H. Naito, “Localized-state distributions in molecularly doped polymers determined from time-of-flight transient photocurrent”, J. Appl. Phys., 88:1 (2000), 252–259 | DOI

[26] T. Yoshikawa, T. Nagase, T. Kobayashi, S. Murakami, H. Naito, “Analysis of time-of-flight transient photocurrent in organic semiconductors with coplanar-blocking-electrodes configuration”, Thin Solid Films, 516:9 (2008), 2595–2599 | DOI

[27] H. Fujimura, T. Nagase, H. Naito, Photoconductivity and Photoconductive Materials: Fundamentals, Techniques and Applications, Wiley Series in Materials for Electronic Optoelectronic Applications, ed. S. O. Kasap, John Wiley Sons, New York, 2022

[28] M. J. Gueorguieva, C. Main, S. Reynolds, R. Brüggemann, C. Longeaud, “Probing localized states distributions in semiconductors by Laplace transform transient photocurrent spectroscopy”, J. Non-Cryst. Solids, 299–302:1 (2002), 541–545 | DOI

[29] M. L. Benkhedir, M. S. Aida, G. J. Adriaenssens, “Defect levels in the band gap of amorphous selenium”, J. Non-Cryst. Solids, 344:3 (2004), 193–198 | DOI

[30] M. Brinza, G. J. Adriaenssens, “Electronic properties of hydrogenated amorphous silicon prepared in expanding thermal plasmas”, J. Optoelectron. Adv. Mater., 8:1 (2006), 2028–2034

[31] F. Serdouk, M. L. Benkhedir, “Density of states in pure and As doped amorphous selenium determined from transient photoconductivity using Laplace-transform method”, Phys. B, 459 (2015), 122–128 | DOI

[32] F. Serdouk, A. Boumali, A. Makhlouf, M. L. Benkhedir, “Solutions of $q$-deformed multiple-trapping model for charge carrier transport from time-of-flight transient photo-current in amorphous semiconductors”, Rev. Mexicana Fis., 66:5 (2020), 643–655 | DOI | MR

[33] F. Serdouk, A. Boumali, R. T. Sibatov, “Fractional model of multiple trapping with charge leakage: transient photoconductivity and transit-time dispersion”, Fractal Fract., 7:3 (2023), 243, 11 pp. | DOI

[34] J. K. E. Tunaley, “Some properties of the asymptotic solutions of the Montroll–Weiss equation”, J. Stat. Phys., 12:1 (1975), 1–10 | DOI

[35] E. W. Montroll, H. Scher, “Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries”, J. Stat. Phys., 9:2 (1973), 101–135 | DOI

[36] J. Bisquert, “Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk”, Phys. Rev. Lett., 91:1 (2003), 010602, 4 pp. | DOI

[37] J. Bisquert, “Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination”, Phys. Rev. E., 72:1 (2005), 011109, 6 pp. | DOI

[38] R. T. Sibatov, V. V. Uchaikin, “Drobno-differentsialnyi podkhod k opisaniyu dispersionnogo perenosa v poluprovodnikakh”, UFN, 179:10 (2009), 1079–1104 | DOI

[39] R. T. Sibatov, V. V. Uchaikin, “Fractional differential kinetics of charge transport in unordered semiconductors”, Semiconductors, 41:3 (2007), 335–340 | DOI

[40] R. T. Sibatov, V. V. Uchaikin, “Fractional theory for transport in disordered semiconductors”, Commun. Nonlinear Sci. Numer. Simul., 13:4 (2008), 715–727 | DOI | MR

[41] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Nonlinear Physical Science, eds. A. C. J. Luo, N. H. Ibragimov, Springer, Berlin, Heidelberg, 2013 | DOI | MR

[42] R. T. Sibatov, V. V. Uchaikin, “Truncated Lévy statistics for dispersive transport in disordered semiconductors”, Commun. Nonlinear Sci. Numer. Simul., 16:12 (2011), 4564–4572 | DOI | MR

[43] R. T. Sibatov, E. V. Morozova, “Mnogokratnyi zakhvat na grebeshkovoi strukture kak model elektronnogo transporta v neuporyadochennykh nanostrukturirovannykh poluprovodnikakh”, ZhETF, 147:5 (2015), 993–1004 | DOI

[44] M. L. Benkhedir, M. Brinza, G. J. Adriaenssens, “Electronic density of states in amorphous selenium”, J. Phys.: Condens. Matter, 16:44 (2004), S5253—S5264 | DOI

[45] S. Raoux, F. Xiong, M. Wuttig, E. Pop, “Phase change materials and phase change memory”, MRS Bull., 39:3 (2014), 703–710 | DOI

[46] I. Vlakh, K. Singkhal, Mashinnye metody analiza i proektirovaniya elektronnykh skhem, Radio i svyaz, M., 1988

[47] R. E. Ziemer, W. H. Tranter, D. R. Fannin, Signals and Systems: Continous and Discrete, Prentice Hall, Upper Saddle River, NJ, 1998

[48] J. Vlach, “Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters”, J. Franklin Inst., 288:2 (1969), 99–113 | DOI

[49] K. Singhal, J. Vlach, “Computation of time domain response by numerical inversion of the Laplace transform”, J. Franklin Inst., 299:2 (1975), 109–126 ; “Method for computing time response of systems described by transfer functions”, 311:2 (1981), 123–130 | DOI | MR | DOI | MR

[50] K. Singhal, J. Vlach, M. Nakhla, “Absolutely stable high order method for time domain solution of networks”, Arch. Elektr. Übertragungstech., 30:4 (1976), 157–166 | MR

[51] B. Davis, B. Martin, “Numerical inversion of the Laplace transform: a survey and comparison of methods”, J. Comput. Phys., 33:1 (1979), 1–32 | DOI | MR