@article{TMF_2024_219_2_a1,
author = {A. Z. Azak and T. Eri\c{s}ir},
title = {Spinors corresponding to modified orthogonal frames in {Euclidean} 3-space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {209--220},
year = {2024},
volume = {219},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/}
}
A. Z. Azak; T. Erişir. Spinors corresponding to modified orthogonal frames in Euclidean 3-space. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/
[1] H. B. Lawson, Jr., M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, 1989 | DOI | MR
[2] Z. Oziewicze, “In memoriam Jaime Keller (1936–2011)”, Adv. Appl. Clifford Algebr., 21:1 (2011), 1–11 | DOI | MR
[3] D. A. Solis, P. Vázquez-Montejo, “Spinor representation of curves and complexified forces on filaments”, Rev. Mexicana Fís., 68:3 (2022), 030701, 8 pp. | DOI | MR
[4] G. F. Torres del Castillo, G. S. Barrales, “Spinor formulation of the differential geometry of curves”, Rev. Colombiana Mat., 38:1 (2004), 27–34 | MR
[5] T. Erişir, K. Eren, “Spinor representation of directional $q$-frame”, Sigma J. Eng. Nat. Sci., 41:5 (2023), 1013–1018 | DOI
[6] .{I}. Kişi, M. Tosun, “Spinor Darboux equations of curves in Euclidean 3-space”, Math. Moravica, 19:1 (2015), 87–93 | DOI | MR
[7] S. Şenyurt, “Spinor formulation of Sabban frame of curve on $S^2$”, Pure Math. Sci., 4:1 (2015), 37–42 | DOI
[8] D. Ünal, İ. Kişi, M. Tosun, “Spinor Bishop equations of curves in Euclidean 3-space”, Adv. Appl. Clifford Algebr., 23:4 (2013), 757–765 | DOI | MR
[9] O. Z. Okuyucu, Ö. G. Yıldız, M. Tosun, “Spinor Frenet equations in three dimensional Lie groups”, Adv. Appl. Clifford Algebr., 26:4 (2016), 1341–1348 | DOI | MR
[10] T. Erişir, N. C. Kardağ, “Spinor representations of involute evolute curves in $E^3$”, J. Fundam. Math. Appl., 2:2 (2019), 148–155 | DOI
[11] T. Erişir, “On spinor construction of Bertrand curves”, AIMS Mathematics, 6:4 (2021), 3583–3591 | DOI | MR
[12] T. Erişir, H. K. Öztaş, “Spinor equations of successor curves”, Univers. J. Math. Appl., 5:1 (2022), 32–41 | DOI
[13] B. D. Yazıcı, Z. İşbilir, M. Tosun, “Spinor representation of framed Mannheim curves”, Turkish J. Math., 46:7 (2022), 2690–2700 | DOI | MR
[14] Y. Balcı, T. Erişir, M. A. Güngör, “Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space”, J. Chungcheong Math. Soc., 28:4 (2015), 525–535 | DOI
[15] T. Erişir, M. A. Güngör, M. Tosun, “Geometry of the hyperbolic spinors corresponding to alternative frame”, Adv. Appl. Clifford Algebr., 25:4 (2015), 799–810 | DOI | MR
[16] Z. Ketenci, T. Erişir, M. A. Güngör, “A construction of hyperbolic spinors according to Frenet frame in Minkowski space”, J. Dyn. Syst. Geom. Theor., 13:2 (2015), 179–193 | DOI | MR
[17] T. Sasai, “The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations”, Tohoku Math. J., 36:1 (1984), 17–24 | DOI | MR
[18] B. Bükcü, M. K. Karacan, “Spherical curves with modified orthogonal frame”, J. New Results Sci., 5:10 (2016), 60–68
[19] B. Bükcü, M. K. Karacan, “On the modified orthogonal frame with curvature and torsion in 3-space”, Math. Sci. Appl. E-Notes, 4:1 (2016), 184–188 | DOI | MR
[20] M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, “Mannheim curves with modified orthogonal frame in Euclidean 3-space”, Turkish J. Math., 43:2 (2019), 648–663 | DOI | MR
[21] M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, “On some curves with modified orthogonal frame in Euclidean 3-space”, Iran J. Sci. Technol. Trans. A: Sci., 43:4 (2019), 1905–1916 | DOI | MR
[22] A. Z. Azak, “Involute-evolute curves according to modified orthogonal frame”, J. Sci. Arts, 2021, no. 2(55), 385–394 | DOI
[23] E. Cartan, “Les groups projectifs qui ne laissent pas invariant aucune multiplicité plane”, Bull. Soc. Math. France, 41 (1913), 53–96 | DOI | MR