Spinors corresponding to modified orthogonal frames in Euclidean 3-space
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 209-220
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The space of spinors, defined as the basic representation of a Clifford algebra, can be expressed as the spin representation of an orthogonal Lie algebra. At the same time, these spin representations can also be characterized as finite-dimensional projective representations of the special orthogonal group. From a geometrical perspective, the behavior of spinors under the action of Lie groups can be examined. Thus, one has the advantage of making a concrete and basic explanation about what spinors are in a geometrical sense. In this study, the spinor representations of an orthogonal frame moving on a analytic curve is investigated geometrically. The spinor equations corresponding to a modified orthogonal frame and a modified orthogonal frame with $\tau$ are derived. The relations between modified orthogonal frames and the Frenet frame are established regarding their spinor formulations. Our motivation in this paper is to give spinor representations of the modified orthogonal frame. Consequently, this study has been planned as an interdisciplinary study between Clifford algebras and geometry.
Keywords: spinor, modified orthogonal frame, isotropic vector.
@article{TMF_2024_219_2_a1,
     author = {A. Z. Azak and T. Eri\c{s}ir},
     title = {Spinors corresponding to modified orthogonal frames in {Euclidean} 3-space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--220},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/}
}
TY  - JOUR
AU  - A. Z. Azak
AU  - T. Erişir
TI  - Spinors corresponding to modified orthogonal frames in Euclidean 3-space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 209
EP  - 220
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/
LA  - ru
ID  - TMF_2024_219_2_a1
ER  - 
%0 Journal Article
%A A. Z. Azak
%A T. Erişir
%T Spinors corresponding to modified orthogonal frames in Euclidean 3-space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 209-220
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/
%G ru
%F TMF_2024_219_2_a1
A. Z. Azak; T. Erişir. Spinors corresponding to modified orthogonal frames in Euclidean 3-space. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a1/

[1] H. B. Lawson, Jr., M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, 1989 | DOI | MR

[2] Z. Oziewicze, “In memoriam Jaime Keller (1936–2011)”, Adv. Appl. Clifford Algebr., 21:1 (2011), 1–11 | DOI | MR

[3] D. A. Solis, P. Vázquez-Montejo, “Spinor representation of curves and complexified forces on filaments”, Rev. Mexicana Fís., 68:3 (2022), 030701, 8 pp. | DOI | MR

[4] G. F. Torres del Castillo, G. S. Barrales, “Spinor formulation of the differential geometry of curves”, Rev. Colombiana Mat., 38:1 (2004), 27–34 | MR

[5] T. Erişir, K. Eren, “Spinor representation of directional $q$-frame”, Sigma J. Eng. Nat. Sci., 41:5 (2023), 1013–1018 | DOI

[6] .{I}. Kişi, M. Tosun, “Spinor Darboux equations of curves in Euclidean 3-space”, Math. Moravica, 19:1 (2015), 87–93 | DOI | MR

[7] S. Şenyurt, “Spinor formulation of Sabban frame of curve on $S^2$”, Pure Math. Sci., 4:1 (2015), 37–42 | DOI

[8] D. Ünal, İ. Kişi, M. Tosun, “Spinor Bishop equations of curves in Euclidean 3-space”, Adv. Appl. Clifford Algebr., 23:4 (2013), 757–765 | DOI | MR

[9] O. Z. Okuyucu, Ö. G. Yıldız, M. Tosun, “Spinor Frenet equations in three dimensional Lie groups”, Adv. Appl. Clifford Algebr., 26:4 (2016), 1341–1348 | DOI | MR

[10] T. Erişir, N. C. Kardağ, “Spinor representations of involute evolute curves in $E^3$”, J. Fundam. Math. Appl., 2:2 (2019), 148–155 | DOI

[11] T. Erişir, “On spinor construction of Bertrand curves”, AIMS Mathematics, 6:4 (2021), 3583–3591 | DOI | MR

[12] T. Erişir, H. K. Öztaş, “Spinor equations of successor curves”, Univers. J. Math. Appl., 5:1 (2022), 32–41 | DOI

[13] B. D. Yazıcı, Z. İşbilir, M. Tosun, “Spinor representation of framed Mannheim curves”, Turkish J. Math., 46:7 (2022), 2690–2700 | DOI | MR

[14] Y. Balcı, T. Erişir, M. A. Güngör, “Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space”, J. Chungcheong Math. Soc., 28:4 (2015), 525–535 | DOI

[15] T. Erişir, M. A. Güngör, M. Tosun, “Geometry of the hyperbolic spinors corresponding to alternative frame”, Adv. Appl. Clifford Algebr., 25:4 (2015), 799–810 | DOI | MR

[16] Z. Ketenci, T. Erişir, M. A. Güngör, “A construction of hyperbolic spinors according to Frenet frame in Minkowski space”, J. Dyn. Syst. Geom. Theor., 13:2 (2015), 179–193 | DOI | MR

[17] T. Sasai, “The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations”, Tohoku Math. J., 36:1 (1984), 17–24 | DOI | MR

[18] B. Bükcü, M. K. Karacan, “Spherical curves with modified orthogonal frame”, J. New Results Sci., 5:10 (2016), 60–68

[19] B. Bükcü, M. K. Karacan, “On the modified orthogonal frame with curvature and torsion in 3-space”, Math. Sci. Appl. E-Notes, 4:1 (2016), 184–188 | DOI | MR

[20] M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, “Mannheim curves with modified orthogonal frame in Euclidean 3-space”, Turkish J. Math., 43:2 (2019), 648–663 | DOI | MR

[21] M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, “On some curves with modified orthogonal frame in Euclidean 3-space”, Iran J. Sci. Technol. Trans. A: Sci., 43:4 (2019), 1905–1916 | DOI | MR

[22] A. Z. Azak, “Involute-evolute curves according to modified orthogonal frame”, J. Sci. Arts, 2021, no. 2(55), 385–394 | DOI

[23] E. Cartan, “Les groups projectifs qui ne laissent pas invariant aucune multiplicité plane”, Bull. Soc. Math. France, 41 (1913), 53–96 | DOI | MR