Generalized theta series and monodromy of a Casimir connection. Case of rank 1
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The monodromy of the $\mathfrak{sl}(2)$ Casimir connection is considered. It is shown that the trace of the monodromy operator over an appropriate space of flat sections gives the Jacobi theta constant and incomplete theta functions. A definition of new objects, namely, incomplete Appell–Lerch sums, is given, and their connection with the trace of the monodromy operator is revealed.
Mots-clés : Casimir connection monodromy, Verma modules
Keywords: incomplete Appell–Lerch sums.
@article{TMF_2024_219_2_a0,
     author = {E. I. Dotsenko},
     title = {Generalized theta series and monodromy of {a~Casimir} connection. {Case} of rank~1},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--208},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/}
}
TY  - JOUR
AU  - E. I. Dotsenko
TI  - Generalized theta series and monodromy of a Casimir connection. Case of rank 1
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 201
EP  - 208
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/
LA  - ru
ID  - TMF_2024_219_2_a0
ER  - 
%0 Journal Article
%A E. I. Dotsenko
%T Generalized theta series and monodromy of a Casimir connection. Case of rank 1
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 201-208
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/
%G ru
%F TMF_2024_219_2_a0
E. I. Dotsenko. Generalized theta series and monodromy of a Casimir connection. Case of rank 1. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/

[1] M. C. N. Cheng, S. Chun, F. Ferrari, S. Gukov, S. M. Harrison, “3d modularity”, JHEP, 10 (2019), 010, 95 pp. | DOI

[2] S. Gukov, C. Manolescu, “A two-variable series for knot complements”, Quantum Topol., 12:1 (2021), 1–109 | DOI | MR

[3] S. Park, 3-manifolds, q-series, and topological strings, Ph.D. thesis, California Institute of Technology, ProQuest LLC, Ann Arbor, MI, 2022 | MR

[4] T. Creutzig, A. Milas, “Higher rank partial and false theta functions and representation theory”, Adv. Math., 314 (2017), 203–227 | DOI | MR

[5] T. Creutzig, A. Milas, “False theta functions and the Verlinde formula”, Adv. Math., 262 (2014), 520–545 | DOI | MR

[6] V. G. Knizhnik, A. B. Zamolodchikov, “Current algebra and Wess–Zumino model in two dimensions”, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR

[7] V. Toledano Laredo, “The trigonometric Casimir connection of a simple Lie algebra”, J. Algebra, 329:1 (2011), 286–327 | DOI | MR

[8] G. Felder, Y. Markov, V. Tarasov, A. Varchenko, “Differential equations compatible with KZ equations”, Math. Phys. Anal. Geom., 3:2 (2000), 139–177 | DOI | MR

[9] V. Tarasov, A. Varchenko, “Duality for Knizhnik–Zamolodchikov and dynamical equations”, Acta Appl. Math., 73:1–2 (2002), 141–154 | DOI | MR

[10] J. J. Millson, V. Toledano Laredo, “Casimir operators and monodromy representations of generalised braid groups”, Transform. Groups, 10:2 (2005), 217–254 | DOI | MR

[11] V. Toledano Laredo, “Flat connections and quantum groups”, Acta Appl. Math., 73:1–2 (2002), 155–173 | DOI | MR

[12] A. Appel, V. Toledano Laredo, Pure braid group actions on category O modules, arXiv: 2208.05331

[13] S. Zwegers, Mock theta functions, arXiv: 0807.4834