Generalized theta series and monodromy of a~Casimir connection. Case of rank~1
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208

Voir la notice de l'article provenant de la source Math-Net.Ru

The monodromy of the $\mathfrak{sl}(2)$ Casimir connection is considered. It is shown that the trace of the monodromy operator over an appropriate space of flat sections gives the Jacobi theta constant and incomplete theta functions. A definition of new objects, namely, incomplete Appell–Lerch sums, is given, and their connection with the trace of the monodromy operator is revealed.
Mots-clés : Casimir connection monodromy, Verma modules
Keywords: incomplete Appell–Lerch sums.
@article{TMF_2024_219_2_a0,
     author = {E. I. Dotsenko},
     title = {Generalized theta series and monodromy of {a~Casimir} connection. {Case} of rank~1},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {219},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/}
}
TY  - JOUR
AU  - E. I. Dotsenko
TI  - Generalized theta series and monodromy of a~Casimir connection. Case of rank~1
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 201
EP  - 208
VL  - 219
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/
LA  - ru
ID  - TMF_2024_219_2_a0
ER  - 
%0 Journal Article
%A E. I. Dotsenko
%T Generalized theta series and monodromy of a~Casimir connection. Case of rank~1
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 201-208
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/
%G ru
%F TMF_2024_219_2_a0
E. I. Dotsenko. Generalized theta series and monodromy of a~Casimir connection. Case of rank~1. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/