Generalized theta series and monodromy of a~Casimir connection. Case of rank~1
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208
Voir la notice de l'article provenant de la source Math-Net.Ru
The monodromy of the $\mathfrak{sl}(2)$ Casimir connection is considered. It is shown that the trace of the monodromy operator over an appropriate space of flat sections gives the Jacobi theta constant and incomplete theta functions. A definition of new objects, namely, incomplete Appell–Lerch sums, is given, and their connection with the trace of the monodromy operator is revealed.
Mots-clés :
Casimir connection monodromy, Verma modules
Keywords: incomplete Appell–Lerch sums.
Keywords: incomplete Appell–Lerch sums.
@article{TMF_2024_219_2_a0,
author = {E. I. Dotsenko},
title = {Generalized theta series and monodromy of {a~Casimir} connection. {Case} of rank~1},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {201--208},
publisher = {mathdoc},
volume = {219},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/}
}
TY - JOUR AU - E. I. Dotsenko TI - Generalized theta series and monodromy of a~Casimir connection. Case of rank~1 JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 201 EP - 208 VL - 219 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/ LA - ru ID - TMF_2024_219_2_a0 ER -
E. I. Dotsenko. Generalized theta series and monodromy of a~Casimir connection. Case of rank~1. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a0/