Classification of the two-component Benjamin–Ono systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 124-150
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Benjamin–Ono equation involving the Hilbert transformation has been studied extensively from different standpoints. Its variant forms and multi-component extensions have been proposed. In this paper, we study the classification of two-component Benjamin–Ono-type systems of the general form. Our classification is carried out by developing the perturbative symmetry approach due to Mikhailov and Novikov. As a result, new two-component integrable Benjamin–Ono type systems are obtained.
Mots-clés : Benjamin–Ono equation
Keywords: symmetry, perturbative symmetry approach, two-component Benjamin–Ono system, recursion operator.
@article{TMF_2024_219_1_a8,
     author = {Min Zhao and Changzheng Qu},
     title = {Classification of the~two-component {Benjamin{\textendash}Ono} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--150},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a8/}
}
TY  - JOUR
AU  - Min Zhao
AU  - Changzheng Qu
TI  - Classification of the two-component Benjamin–Ono systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 124
EP  - 150
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a8/
LA  - ru
ID  - TMF_2024_219_1_a8
ER  - 
%0 Journal Article
%A Min Zhao
%A Changzheng Qu
%T Classification of the two-component Benjamin–Ono systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 124-150
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a8/
%G ru
%F TMF_2024_219_1_a8
Min Zhao; Changzheng Qu. Classification of the two-component Benjamin–Ono systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 124-150. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a8/

[1] H. Ono, “Algebraic solitary waves in stratified fluids”, J. Phys. Soc. Japan, 39:4 (1975), 1082–1091 | DOI | MR

[2] H. Ono, “Algebraic Rossby wave soliton”, J. Phys. Soc. Japan, 50:8 (1981), 2757–2761 | DOI | MR

[3] A. A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations I. Exact two-periodic wave solution”, J. Phys. Soc. Japan, 47:5 (1979), 1701–1705 | DOI | MR

[4] T. L. Bock, M. D. Kruskal, “A two-parameter Miura transformation of the Benjamin–Ono equation”, Phys. Lett. A, 74:3–4 (1979,), 173–176 | DOI | MR

[5] M. J. Ablowitz, A. S. Fokas, R. L. Anderson, “The direct linearizing transform and the Benjamin–Ono equation”, Phys. Lett. A, 93:8 (1983), 375–378 | DOI | MR

[6] A. Fokas, M. Ablowitz, “Inverse scattering transform for the Benjamin–Ono equation – A pivot to multidimensional problems”, Stud. Appl. Math., 68:1 (1983), 1–10 | DOI | MR | Zbl

[7] Y. Matsuno, “Exact multi-soliton solution of the Benjamin–Ono equation”, J. Phys. A: Math. Gen., 12:4 (1979), 619–631 ; Bilinear Transformation Method, Mathematics in Science and Engineering, 174, Academic Press, Orlando, FL, 1984 | DOI | MR

[8] K. M. Case, “Benjamin–Ono-related equations and their solutions”, Proc. Natl. Acad. Sci. USA, 76:1 (1979), 1–3 ; “The $N$-soliton solution of the Benjamin–Ono equation”, 75:8 (1978), 3562–3563 ; “Properties of the Benjamin–Ono equation”, J. Math. Phys., 20:5 (1978), 972–977 | DOI | DOI | MR | DOI | MR

[9] A. D. Ionescu, C. E. Kenig, “Global well-posedness of the Benjamin–Ono equation in low-regularity spaces”, J. Amer. Math. Soc., 20:3 (2007), 753–798 | DOI | MR

[10] R. J. Iório, Jr., “On the Cauchy problem for the Benjamin–Ono equation”, Commun. Partial Differ. Equ., 11:10 (1986), 1031–1081 | DOI | MR

[11] H. Koch, N. Tzvetkov, “On the local well-posedness of the Benjamin–Ono equation in $H^s(\mathbb R)$”, Int. Math. Res. Not., 2003:26 (2003), 1449–1464 | DOI | MR

[12] L. Molinet, “Global well-posedness in $L^2$ for the periodic Benjamin–Ono equation”, Amer. J. Math., 130:3 (2008), 635–683 | DOI | MR

[13] G. Ponce, “On the global well-posedness of the Benjamin–Ono equation”, Differ. Integral Equ., 4:3 (1991), 527–542 | MR

[14] T. Tao, “Global well-posedness of the Benjamin–Ono equation in $H^1(\mathbb R)$”, J. Hyperbolic Differ. Equ., 1:1 (2004), 27–49 | DOI | MR

[15] D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair, J. L. Bona, “The stability of internal solitary waves”, Math. Proc. Cambridge Philos. Soc., 94:2 (1983), 351–379 | DOI | MR

[16] J. A. Pava, “Existence and stability of solitary wave solutions of the Benjamin equation”, J. Differ. Equ., 152:1 (1999), 136–159 ; “On the instability of solitary waves solutions of the generalized Benjamin equation”, Adv. Differ. Equ., 8:1 (2003), 55–52 ; Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Mathematical Surveys and Monographs, 156, AMS, Providence, RI, 2009 | DOI | MR | DOI | MR | DOI | MR

[17] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl

[18] V. E. Zakharov, E. I. Schulman, “Integrability of nonlinear systems and perturbation theory”, What is Integrability?, Springer Series in Nonlinear Dynamics, 448, ed. V. E. Zakharov, Springer, Berlin, 1991, 185–250 | DOI | MR

[19] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer Series in Nonlinear Dynamics, 448, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR

[20] J. A. Sanders, J. P. Wang, “On the integrability of homogeneous scalar evolution equations”, J. Differ. Equ., 147:2 (1998), 410–434 | DOI | MR

[21] V. V. Sokolov, T. Wolf, “A symmetry test for quasilinear coupled systems”, Inverse Problems, 15:2 (1999), L5–L11 | DOI | MR

[22] V. V. Sokolov, T. Wolf, “Classification of integrable polynomial vector evolution equations”, J. Phys. A.: Math. Gen., 34:49 (2001), 11139–11148 | DOI | MR

[23] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl

[24] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Extension of the module of invertible transformations. Classification of integrable systems”, Commun. Math. Phys., 115:1 (1988), 1–19 | DOI | MR

[25] R. Hernández Heredero, V. V. Sokolov, S. I. Svinolupov, “Why are there so many integrable evolution equations of third order?”, Nonlinear Evolution Equations and Dynamical Systems: Needs' 94 (Los Alamos, NM, USA, 11–18 September, 1994), eds. V. G. Makhankov, A. R. Bishop, D. D. Holm, World Sci., Singapore, 1995, 42–53 ; “Toward the classification of third-order integrable evolution equations”, J. Phys. A: Math. Gen., 27:13 (1994), 4557–4568 | MR | DOI | MR

[26] T. Tsuchida, T. Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A.: Math. Gen., 38:35 (2005), 7691–7733 | DOI | MR

[27] A. V. Mikhailov, V. S. Novikov, J. P. Wang, “On classification of integrable nonevolutionary equations”, Stud. Appl. Math., 118:4 (2007), 419–457 | DOI | MR

[28] A. V. Mikhailov, V. S. Novikov, “Perturbative symmetry approach”, J. Phys. A: Math. Gen., 35:22 (2002), 4775–4790 | DOI | MR

[29] A. V. Mikhailov, V. S. Novikov, “Classification of integrable Benjamin–Ono-type equations”, Mosc. Math. J., 3:4 (2003), 1293–1305 | DOI | MR | Zbl

[30] M. Funakoshi, M. Oikawa, “The resonant interaction between a long internal gravity wave and a surface gravity wave packet”, J. Phys. Soc. Japan, 52:6 (1983), 1982–1995 | DOI | MR

[31] B. K. Berntson, E. Langmann, J. Lenells, “Nonchiral intermediate long-wave equation and interedge effects in narrow quantum Hall systems”, Phys. Rev. B, 102:15 (2020), 155308, 14 pp. ; “On the non-chiral intermediate long wave equation: II. Periodic case”, Nonlinearity, 35:8 (2022), 4517–4548 | DOI | DOI | MR

[32] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | DOI | MR | Zbl

[33] J. P. Wang, Symmetries and conservation laws of evolution equations, Ph.D. thesis, Thomas Stieltjes Institute for Mathematics, Amsterdam, 1998

[34] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR

[35] A. N. W. Hone, V. Novikov, J. P. Wang, “Two-component generalizations of the Camassa–Holm equation”, Nonlinearity, 30:2 (2017), 622–658 | DOI | MR

[36] A. V. Mikhailov, V. S. Novikov, J. P. Wang, “Perturbative symmetry approach for differential-difference equations”, Commun. Math. Phys., 393:2 (2022), 1063–1104 | DOI | MR

[37] G. X. Zhao, Integrability of two-component systems of partial differential equations, Ph.D. thesis, Loughborough Univ., Loughborough, 2020 | DOI