The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 80-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions is investigated by the Riemann–Hilbert approach. Three symmetries are formulated to derive compact exact solutions. The solutions include six different types of soliton solutions and breathers, such as dark–dark, bright–bright, kink–dark–dark, kink–bright–bright solitons, and a breather–breather solution.
Keywords: focusing coupled modified Korteweg–de Vries equation, nonzero boundary condition, dark–dark soliton, kink soliton, Riemann–Hilbert problem.
@article{TMF_2024_219_1_a6,
     author = {Xinxin Ma},
     title = {The~focusing coupled modified {Korteweg{\textendash}de} {Vries} equation with nonzero boundary conditions: {the~Riemann{\textendash}Hilbert} problem and soliton classification},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {80--113},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/}
}
TY  - JOUR
AU  - Xinxin Ma
TI  - The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 80
EP  - 113
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/
LA  - ru
ID  - TMF_2024_219_1_a6
ER  - 
%0 Journal Article
%A Xinxin Ma
%T The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 80-113
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/
%G ru
%F TMF_2024_219_1_a6
Xinxin Ma. The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 80-113. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/

[1] R. M. Miura, “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR

[2] E. A. Ralph, L. Pratt, “Predicting eddy detachment for an equivalent barotropic thin jet”, J. Nonlinear Sci., 4 (1994), 355–374 | DOI

[3] H. Ono, “Soliton fission in anharmonic lattices with reflectionless inhomogeneity”, J. Phys. Soc. Japan, 61:12 (1992), 4336–4343 | DOI

[4] A. H. Khater, O. H. El-Kalaawy, D. K. Callebaut, “Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma”, Phys. Scr., 58:6 (1998), 545–548 | DOI

[5] G. Q. Zhang, Z. Y. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Phys. D, 410 (2020), 132521, 22 pp. | DOI | MR

[6] H. Ono, “On a modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 37:3 (1974), 882–882 | DOI

[7] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1681 | DOI

[8] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI | MR

[9] F. Demontis, “Tochnye resheniya modifitsirovannogo uravneniya Kortevega–de Friza”, TMF, 168:1 (2011), 35–48 | DOI | DOI | MR

[10] N. Cheemaa, A. R. Seadawy, T. G. Sugati, D. Baleanu, “Study of the dynamical nonlinear modified Korteweg–de Vries equation arising in plasma physics and its analytical wave solutions”, Results Phys., 19 (2020), 103480, 8 pp. | DOI

[11] H. Schamel, “A modified Korteweg–de Vries equation for ion acoustic wavess due to resonant electrons”, J. Plasma Phys., 9:3 (1973), 377–387 | DOI

[12] J. Y. Zhu, D. W. Zhou, X. G. Geng, “$\bar\partial$-problem and Cauchy matrix for the mKdV equation with self-consistent sources”, Phys. Scr., 89:6 (2014), 065201, 7 pp. | DOI

[13] B. F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretization of a multi-component short pulse equation”, J. Math. Phys., 56:4 (2015), 043502, 15 pp. | DOI | MR

[14] Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions”, J. Math. Phys., 52:12 (2011), 123702, 22 pp. | DOI | MR

[15] T. Busch, J. R. Anglin, “Dark-bright solitons in inhomogeneous Bose–Einstein condensates”, Phys. Rev. Lett., 87:1 (2001), 010401, 4 pp. | DOI

[16] M. A. Hoefer, J. J. Chang, C. Hamner, P. Engels, “Dark-dark solitons and modulational instability in miscible two-component Bose–Einstein condensates”, Phys. Rev. A, 84:4 (2011), 041605, 4 pp. | DOI

[17] Q.-H. Park, H. J. Shin, “Darboux transformation and Crum's formula for multi-component integrable equations”, Phys. D, 157:1–2 (2001), 1–15 | DOI | MR

[18] D. V. Kartashov, A. V. Kim, S. A. Skobelev, “Solitonnye struktury volnovogo polya s proizvolnym chislom kolebanii v nerezonansnykh sredakh”, Pisma v ZhETF, 78:5 (2003), 722–726 | DOI

[19] Y. Xiao, E. G. Fan, P. Liu, “Inverse scattering transform for the coupled modified Korteweg–de Vries equation with nonzero boundary conditions”, J. Math. Anal. Appl., 504:2 (2021), 125567, 31 pp. | DOI | MR

[20] S.-F. Tian, “Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval”, Commun. Pure Appl. Anal., 17:3 (2018), 923–957 | DOI | MR

[21] X. G. Geng, M. M. Chen, K. D. Wang, “Long-time asymptotics of the coupled modified Korteweg–de Vries equation”, J. Geom. Phys., 142 (2019), 151–167 | DOI | MR

[22] X. G. Geng, Y. Y. Zhai, H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy”, Adv. Math., 263 (2014), 123–153 | DOI | MR

[23] T. Tsuchida, M. Wadati, “The coupled modified Korteweg–de Vries equations”, J. Phys. Soc. Japan, 67:4 (1998), 1175–1187 | DOI

[24] H. Q. Zhang, B. Tian, T. Xu, H. Li, C. Zhang, H. Zhang, “Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations”, J. Phys. A: Math. Theor., 41:3 (2008), 355210, 13 pp. | MR

[25] J. P. Wu, X. G. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR

[26] J. Q. Wang, L. X. Tian, B. L. Guo, Y. N. Zhang, “Nonlinear stability of breather solutions to the coupled modified Korteweg–de Vries equations”, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105367, 14 pp. | DOI | MR

[27] K. D. Wang, X. G. Geng, M. M. Chen, B. Xue, “Riemann–Hilbert approach and long-time asymptotics for the three-component derivative nonlinear Schrödinger equation”, Anal. Math. Phys., 12:3 (2022), 71, 33 pp. | MR

[28] A. B. de Monvel, A. Kostenko, D. Shepelsky, G. Teschl, “Long-time asymptotics for the Camassa–Holm equation”, SIAM J. Math. Anal., 41:4 (2009), 1559–1588 | DOI | MR

[29] P. A. Deift, X. Zhou, “Long-time asymptotics for integrable systems. Higher order theory”, Commun. Math. Phys., 165:1 (1994), 175–191 | DOI | MR

[30] V. E. Zakharov, L. A. Ostrovsky, “Modulation instability: The beginning”, Phys. D, 238:5 (2009), 540–548 | DOI | MR

[31] D. Bilman, P. D. Miller, “A robust inverse scattering transform for the focusing nonlinear Schrödinger equation”, Commun. Pure Appl. Math., 72:8 (2019), 1722–1805 | DOI | MR

[32] D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon”, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR

[33] X. Zhou, “Direct and inverse scattering transforms with arbitrary spectral singularities”, Commun. Pure Appl. Math., 42:7 (1989), 895–938 | DOI | MR

[34] H. Liu, J. Shen, X. G. Geng, “Inverse scattering transformation for the $N$-component focusing nonlinear Schrödinger equation with nonzero boundary conditions”, Lett. Math. Phys., 113:1 (2023), 23, 47 pp. | DOI | MR

[35] X. Zhou, “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20:4 (1989), 966–986 | DOI | MR

[36] A. S. Fokas, A. R. Its, “The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764 | DOI | MR

[37] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR

[38] A. Mohamadou, E. Wamba, D. Lissouck, T. C. Kofane, “Dynamics of kink-dark solitons in Bose–Einstein condensates with both two- and three-body interactions”, Phys. Rev. E, 85:4 (2012), 046605, 8 pp. | DOI

[39] Y. Li, Y.-H. Qin, L.-C. Zhao et al., “Vector kink-dark complex solitons in a three-component Bose–Einstein condensate”, Commun. Theor. Phys., 73:5 (2021), 055502, 7 pp. | DOI

[40] K. S. Al-Ghafri, E. V. Krishnan, A. Biswas, “W-shaped and other solitons in optical nanofibers”, Results Phys., 23 (2021), 103973, 15 pp. | DOI

[41] D. Kraus, G. Biondini, G. Kovačič, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR