@article{TMF_2024_219_1_a6,
author = {Xinxin Ma},
title = {The~focusing coupled modified {Korteweg{\textendash}de} {Vries} equation with nonzero boundary conditions: {the~Riemann{\textendash}Hilbert} problem and soliton classification},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {80--113},
year = {2024},
volume = {219},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/}
}
TY - JOUR AU - Xinxin Ma TI - The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 80 EP - 113 VL - 219 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/ LA - ru ID - TMF_2024_219_1_a6 ER -
%0 Journal Article %A Xinxin Ma %T The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 80-113 %V 219 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/ %G ru %F TMF_2024_219_1_a6
Xinxin Ma. The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 80-113. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a6/
[1] R. M. Miura, “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR
[2] E. A. Ralph, L. Pratt, “Predicting eddy detachment for an equivalent barotropic thin jet”, J. Nonlinear Sci., 4 (1994), 355–374 | DOI
[3] H. Ono, “Soliton fission in anharmonic lattices with reflectionless inhomogeneity”, J. Phys. Soc. Japan, 61:12 (1992), 4336–4343 | DOI
[4] A. H. Khater, O. H. El-Kalaawy, D. K. Callebaut, “Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma”, Phys. Scr., 58:6 (1998), 545–548 | DOI
[5] G. Q. Zhang, Z. Y. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Phys. D, 410 (2020), 132521, 22 pp. | DOI | MR
[6] H. Ono, “On a modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 37:3 (1974), 882–882 | DOI
[7] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1681 | DOI
[8] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI | MR
[9] F. Demontis, “Tochnye resheniya modifitsirovannogo uravneniya Kortevega–de Friza”, TMF, 168:1 (2011), 35–48 | DOI | DOI | MR
[10] N. Cheemaa, A. R. Seadawy, T. G. Sugati, D. Baleanu, “Study of the dynamical nonlinear modified Korteweg–de Vries equation arising in plasma physics and its analytical wave solutions”, Results Phys., 19 (2020), 103480, 8 pp. | DOI
[11] H. Schamel, “A modified Korteweg–de Vries equation for ion acoustic wavess due to resonant electrons”, J. Plasma Phys., 9:3 (1973), 377–387 | DOI
[12] J. Y. Zhu, D. W. Zhou, X. G. Geng, “$\bar\partial$-problem and Cauchy matrix for the mKdV equation with self-consistent sources”, Phys. Scr., 89:6 (2014), 065201, 7 pp. | DOI
[13] B. F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretization of a multi-component short pulse equation”, J. Math. Phys., 56:4 (2015), 043502, 15 pp. | DOI | MR
[14] Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions”, J. Math. Phys., 52:12 (2011), 123702, 22 pp. | DOI | MR
[15] T. Busch, J. R. Anglin, “Dark-bright solitons in inhomogeneous Bose–Einstein condensates”, Phys. Rev. Lett., 87:1 (2001), 010401, 4 pp. | DOI
[16] M. A. Hoefer, J. J. Chang, C. Hamner, P. Engels, “Dark-dark solitons and modulational instability in miscible two-component Bose–Einstein condensates”, Phys. Rev. A, 84:4 (2011), 041605, 4 pp. | DOI
[17] Q.-H. Park, H. J. Shin, “Darboux transformation and Crum's formula for multi-component integrable equations”, Phys. D, 157:1–2 (2001), 1–15 | DOI | MR
[18] D. V. Kartashov, A. V. Kim, S. A. Skobelev, “Solitonnye struktury volnovogo polya s proizvolnym chislom kolebanii v nerezonansnykh sredakh”, Pisma v ZhETF, 78:5 (2003), 722–726 | DOI
[19] Y. Xiao, E. G. Fan, P. Liu, “Inverse scattering transform for the coupled modified Korteweg–de Vries equation with nonzero boundary conditions”, J. Math. Anal. Appl., 504:2 (2021), 125567, 31 pp. | DOI | MR
[20] S.-F. Tian, “Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval”, Commun. Pure Appl. Anal., 17:3 (2018), 923–957 | DOI | MR
[21] X. G. Geng, M. M. Chen, K. D. Wang, “Long-time asymptotics of the coupled modified Korteweg–de Vries equation”, J. Geom. Phys., 142 (2019), 151–167 | DOI | MR
[22] X. G. Geng, Y. Y. Zhai, H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy”, Adv. Math., 263 (2014), 123–153 | DOI | MR
[23] T. Tsuchida, M. Wadati, “The coupled modified Korteweg–de Vries equations”, J. Phys. Soc. Japan, 67:4 (1998), 1175–1187 | DOI
[24] H. Q. Zhang, B. Tian, T. Xu, H. Li, C. Zhang, H. Zhang, “Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations”, J. Phys. A: Math. Theor., 41:3 (2008), 355210, 13 pp. | MR
[25] J. P. Wu, X. G. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR
[26] J. Q. Wang, L. X. Tian, B. L. Guo, Y. N. Zhang, “Nonlinear stability of breather solutions to the coupled modified Korteweg–de Vries equations”, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105367, 14 pp. | DOI | MR
[27] K. D. Wang, X. G. Geng, M. M. Chen, B. Xue, “Riemann–Hilbert approach and long-time asymptotics for the three-component derivative nonlinear Schrödinger equation”, Anal. Math. Phys., 12:3 (2022), 71, 33 pp. | MR
[28] A. B. de Monvel, A. Kostenko, D. Shepelsky, G. Teschl, “Long-time asymptotics for the Camassa–Holm equation”, SIAM J. Math. Anal., 41:4 (2009), 1559–1588 | DOI | MR
[29] P. A. Deift, X. Zhou, “Long-time asymptotics for integrable systems. Higher order theory”, Commun. Math. Phys., 165:1 (1994), 175–191 | DOI | MR
[30] V. E. Zakharov, L. A. Ostrovsky, “Modulation instability: The beginning”, Phys. D, 238:5 (2009), 540–548 | DOI | MR
[31] D. Bilman, P. D. Miller, “A robust inverse scattering transform for the focusing nonlinear Schrödinger equation”, Commun. Pure Appl. Math., 72:8 (2019), 1722–1805 | DOI | MR
[32] D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon”, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR
[33] X. Zhou, “Direct and inverse scattering transforms with arbitrary spectral singularities”, Commun. Pure Appl. Math., 42:7 (1989), 895–938 | DOI | MR
[34] H. Liu, J. Shen, X. G. Geng, “Inverse scattering transformation for the $N$-component focusing nonlinear Schrödinger equation with nonzero boundary conditions”, Lett. Math. Phys., 113:1 (2023), 23, 47 pp. | DOI | MR
[35] X. Zhou, “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20:4 (1989), 966–986 | DOI | MR
[36] A. S. Fokas, A. R. Its, “The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764 | DOI | MR
[37] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[38] A. Mohamadou, E. Wamba, D. Lissouck, T. C. Kofane, “Dynamics of kink-dark solitons in Bose–Einstein condensates with both two- and three-body interactions”, Phys. Rev. E, 85:4 (2012), 046605, 8 pp. | DOI
[39] Y. Li, Y.-H. Qin, L.-C. Zhao et al., “Vector kink-dark complex solitons in a three-component Bose–Einstein condensate”, Commun. Theor. Phys., 73:5 (2021), 055502, 7 pp. | DOI
[40] K. S. Al-Ghafri, E. V. Krishnan, A. Biswas, “W-shaped and other solitons in optical nanofibers”, Results Phys., 23 (2021), 103973, 15 pp. | DOI
[41] D. Kraus, G. Biondini, G. Kovačič, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR