Keywords: Landau–Lifshitz equation, method of images, kinks, breathers.
@article{TMF_2024_219_1_a5,
author = {V. V. Kiselev},
title = {Solitons in a~semi-infinite ferromagnet with anisotropy of the~easy axis type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {55--79},
year = {2024},
volume = {219},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/}
}
V. V. Kiselev. Solitons in a semi-infinite ferromagnet with anisotropy of the easy axis type. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 55-79. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/
[1] A. M. Kosevich, E. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983
[2] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Magnetic solitons”, Phys. Rep., 194:3–4 (1990), 117–238 | DOI
[3] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014
[4] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, 78, SIAM, Philadelphia, PA, 2008 | MR
[5] A. I. Bobenko, “Sobstvennye funktsii kraevykh zadach Dirikhle i Neimana na pryamougolnike dlya ellipticheskogo uravneniya sinus-Gordon”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauchn. sem. LOMI, 179, Izd-vo “Nauka”, Leningrad. otd., L., 1989, 32–36 | DOI | MR | Zbl
[6] R. F. Bikbaev, “Konechnozonnye resheniya kraevykh zadach dlya integriruemykh uravnenii”, Mat. zametki, 48:2 (1990), 10–18 | DOI | MR | Zbl
[7] I. T. Habibullin, “Bäcklund transformation and integrable boundary-initial value problems”, Nonlinear World, IV International Workshop on Nonlinear and Turbulent Processes in Physics (Kiev, Ukraine, October 9–22, 1989), v. 1, eds. V. G. Baryachtar, V. M. Chernousenko, N. S. Erokhin et al., World Sci., Singapore, 1990, 130–138 | MR
[8] I. T. Khabibullin, “Ob integriruemykh nachalno-kraevykh zadachakh”, TMF, 86:1 (1991), 43–52 | DOI | MR | Zbl
[9] A. S. Fokas, “Integrable nonlinear evolution equation on the half-line”, Commun. Math. Phys., 230:1 (2002), 1–39 | DOI | MR
[10] A. S. Fokas, “The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs”, Comm. Pure Appl. Math., 58:5 (2005), 639–670 | DOI | MR
[11] P. N. Bibikov, V. O. Tarasov, “Kraevaya zadacha dlya nelineinogo uravneniya Shredingera”, TMF, 79:3 (1989), 334–346 | DOI | MR | Zbl
[12] V. O. Tarasov, “The integrable initial-boundary value problem on semiline: nonlinear Shrödinger and sine-Gordon equations”, Inverse Problems, 7:3 (1991), 435–449 | DOI | MR
[13] A. S. Fokas, “An initial-boundary value problem for the nonlinear Shrödinger equation”, Phys. D, 35:1–2 (1989), 167–185 | DOI | MR
[14] E. K. Sklyanin, “Granichnye usloviya dlya integriruemykh uravnenii”, Funkts. analiz i ego prilozh., 21:2 (1987), 86–87 | DOI | MR | Zbl
[15] V. V. Kiselev, A. A. Raskovalov, “Vzaimodeistvie solitonov s granitsei ferromagnitnoi plastiny”, ZhETF, 162:5 (2022), 693–707 | DOI | DOI
[16] V. V. Kiselev, “Nelineinaya dinamika geizenbergovskogo ferromagnetika na poluosi”, ZhETF, 163:3 (2023), 375–386 | DOI
[17] W. H. Meiklejohn, S. P. Bean, “New magnetic anisotropy”, Phys. Rev., 102:5 (1956), 1413–1414 | DOI
[18] W. H. Meiklejohn, S. P. Bean, “New magnetic anisotropy”, Phys. Rev., 105:3 (1957), 904–913 | DOI
[19] B. N. Filippov, Mikromagnitnye struktury i ikh nelineinye svoistva. Chast 1, Fizika kondensirovannykh sred, 12, UrO RAN, Ekaterinburg, 2019
[20] I. G. Gochev, “Nelineinye vozbuzhdeniya v ogranichennoi spinovoi tsepochke”, FNT, 10:6 (1984), 615–619
[21] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl
[22] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[23] A. B. Migdal, Kachestvennye metody v kvantovoi teorii, Nauka, M., 1979 | MR | Zbl