Solitons in a semi-infinite ferromagnet with anisotropy of the easy axis type
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 55-79
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a special variant of the inverse scattering transform method to construct and analyze soliton excitations in a semi-infinite sample of an easy-axis ferromagnet in the case of a partial pinning of spins at its surface. We consider the limit cases of free edge spins and spins that are fully pinned at the sample boundary. We find frequency and modulation characteristics of solitons localized near the sample surface. In the case of different degrees of edge spin pinning, we study changes in the cores of moving solitons as a result of their elastic reflection from the sample boundary. We obtain integrals of motion that control the dynamics of magnetic solitons in a semi-infinite sample.
Mots-clés : solitons
Keywords: Landau–Lifshitz equation, method of images, kinks, breathers.
@article{TMF_2024_219_1_a5,
     author = {V. V. Kiselev},
     title = {Solitons in a~semi-infinite ferromagnet with anisotropy of the~easy axis type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--79},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/}
}
TY  - JOUR
AU  - V. V. Kiselev
TI  - Solitons in a semi-infinite ferromagnet with anisotropy of the easy axis type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 55
EP  - 79
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/
LA  - ru
ID  - TMF_2024_219_1_a5
ER  - 
%0 Journal Article
%A V. V. Kiselev
%T Solitons in a semi-infinite ferromagnet with anisotropy of the easy axis type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 55-79
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/
%G ru
%F TMF_2024_219_1_a5
V. V. Kiselev. Solitons in a semi-infinite ferromagnet with anisotropy of the easy axis type. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 55-79. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a5/

[1] A. M. Kosevich, E. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[2] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Magnetic solitons”, Phys. Rep., 194:3–4 (1990), 117–238 | DOI

[3] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014

[4] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, 78, SIAM, Philadelphia, PA, 2008 | MR

[5] A. I. Bobenko, “Sobstvennye funktsii kraevykh zadach Dirikhle i Neimana na pryamougolnike dlya ellipticheskogo uravneniya sinus-Gordon”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauchn. sem. LOMI, 179, Izd-vo “Nauka”, Leningrad. otd., L., 1989, 32–36 | DOI | MR | Zbl

[6] R. F. Bikbaev, “Konechnozonnye resheniya kraevykh zadach dlya integriruemykh uravnenii”, Mat. zametki, 48:2 (1990), 10–18 | DOI | MR | Zbl

[7] I. T. Habibullin, “Bäcklund transformation and integrable boundary-initial value problems”, Nonlinear World, IV International Workshop on Nonlinear and Turbulent Processes in Physics (Kiev, Ukraine, October 9–22, 1989), v. 1, eds. V. G. Baryachtar, V. M. Chernousenko, N. S. Erokhin et al., World Sci., Singapore, 1990, 130–138 | MR

[8] I. T. Khabibullin, “Ob integriruemykh nachalno-kraevykh zadachakh”, TMF, 86:1 (1991), 43–52 | DOI | MR | Zbl

[9] A. S. Fokas, “Integrable nonlinear evolution equation on the half-line”, Commun. Math. Phys., 230:1 (2002), 1–39 | DOI | MR

[10] A. S. Fokas, “The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs”, Comm. Pure Appl. Math., 58:5 (2005), 639–670 | DOI | MR

[11] P. N. Bibikov, V. O. Tarasov, “Kraevaya zadacha dlya nelineinogo uravneniya Shredingera”, TMF, 79:3 (1989), 334–346 | DOI | MR | Zbl

[12] V. O. Tarasov, “The integrable initial-boundary value problem on semiline: nonlinear Shrödinger and sine-Gordon equations”, Inverse Problems, 7:3 (1991), 435–449 | DOI | MR

[13] A. S. Fokas, “An initial-boundary value problem for the nonlinear Shrödinger equation”, Phys. D, 35:1–2 (1989), 167–185 | DOI | MR

[14] E. K. Sklyanin, “Granichnye usloviya dlya integriruemykh uravnenii”, Funkts. analiz i ego prilozh., 21:2 (1987), 86–87 | DOI | MR | Zbl

[15] V. V. Kiselev, A. A. Raskovalov, “Vzaimodeistvie solitonov s granitsei ferromagnitnoi plastiny”, ZhETF, 162:5 (2022), 693–707 | DOI | DOI

[16] V. V. Kiselev, “Nelineinaya dinamika geizenbergovskogo ferromagnetika na poluosi”, ZhETF, 163:3 (2023), 375–386 | DOI

[17] W. H. Meiklejohn, S. P. Bean, “New magnetic anisotropy”, Phys. Rev., 102:5 (1956), 1413–1414 | DOI

[18] W. H. Meiklejohn, S. P. Bean, “New magnetic anisotropy”, Phys. Rev., 105:3 (1957), 904–913 | DOI

[19] B. N. Filippov, Mikromagnitnye struktury i ikh nelineinye svoistva. Chast 1, Fizika kondensirovannykh sred, 12, UrO RAN, Ekaterinburg, 2019

[20] I. G. Gochev, “Nelineinye vozbuzhdeniya v ogranichennoi spinovoi tsepochke”, FNT, 10:6 (1984), 615–619

[21] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl

[22] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[23] A. B. Migdal, Kachestvennye metody v kvantovoi teorii, Nauka, M., 1979 | MR | Zbl