Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 44-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a method for deriving Hamilton's equations describing the dynamics of solitons when they move along an inhomogeneous and time-varying large-scale background for nonlinear wave equations that are completely integrable in the Ablowitz–Kaup–Newell–Segur (AKNS) scheme. The method is based on the development of old Stokes' ideas that allow analytically continuing the relations for linear waves into the soliton region, and is practically implemented in the example of the defocusing nonlinear Schrödinger equation. A condition is formulated under which the external potential is only to be taken into account when describing the evolution of the background, and that this case, the Newton equation is obtained for the soliton dynamics in an external potential.
Mots-clés : solitons
Keywords: nonlinear Schrödinger equation, perturbation theory.
@article{TMF_2024_219_1_a4,
     author = {A. M. Kamchatnov},
     title = {Hamiltonian theory of motion of dark solitons in the~theory of nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--54},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a4/}
}
TY  - JOUR
AU  - A. M. Kamchatnov
TI  - Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 44
EP  - 54
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a4/
LA  - ru
ID  - TMF_2024_219_1_a4
ER  - 
%0 Journal Article
%A A. M. Kamchatnov
%T Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 44-54
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a4/
%G ru
%F TMF_2024_219_1_a4
A. M. Kamchatnov. Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 44-54. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a4/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[2] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | DOI | MR | MR | Zbl | Zbl

[3] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[4] Y. S. Kivshar, B. A. Malomed, “Dynamics of solitons in nearly integrable systems”, Rev. Mod. Phys., 61:4 (1989), 763–915 | DOI

[5] A. M. Kosevich, “Particle and wave properties of solitons. Resonant and nonresonant soliton scattering by impurities”, Phys. D, 41:2 (1990), 253–261 | DOI | MR

[6] V. I. Karpman, E. M. Maslov, “Teoriya vozmuschenii dlya solitonov”, ZhETF, 73:2 (1977), 537–559 | MR

[7] V. I. Karpman, E. M. Maslov, “Struktura khvostov, obrazuyuschikhsya v solitonakh pod deistviem vozmuschenii”, ZhETF, 75:2 (1978), 504–517

[8] C. J. Knickerbocker, A. C. Newell, “Shelves and the Korteweg–de Vries equation”, J. Fluid Mech., 98:4 (1980), 803–818 | DOI | MR

[9] E. P. Gross, “Structure of a quantized vortex in boson systems”, Nuovo Cim., 20:3 (1961), 454–457 | DOI | MR

[10] L. P. Pitaevskii, “Vikhrevye niti v neidealnom boze-gaze”, ZhETF, 40:2 (1961), 646–651

[11] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega–de Frisa – vpolne integriruemaya gamiltonova sistema”, Funkts. analiz prilozh., 5:4 (1971), 18–27 | DOI | MR | Zbl

[12] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR

[13] V. P. Maslov, B. A. Tsupin, “Neobkhodimye usloviya suschestvovaniya beskonechno uzkikh solitonov v gazovoi dinamike”, Dokl. AN SSSR, 246:2 (1979), 298–300 | MR

[14] S. I. Shevchenko, “O kvaziodnomernoi sverkhtekuchesti v boze-sistemakh”, FNT, 14:10 (1988), 1011–1027

[15] L. P. Pitaevskii, S. Stringari, Bose–Einstein Condensation, International Series of Monographs on Physics, 116, Clarendon, Oxford, 2003 | MR

[16] L. P. Pitaevskii, “Dinamika uedinennykh voln v ultrakholodnykh gazakh v terminakh nablyudaemykh velichin”, UFN, 186:10 (2016), 1127–1132 | DOI | DOI

[17] S. K. Ivanov, A. M. Kamchatnov, “Motion of dark solitons in a non-uniform flow of Bose–Einstein condensate”, Chaos, 32:11 (2022), 113142, 10 pp., arXiv: 2208.12283 | DOI

[18] Th. Busch, J. R. Anglin, “Motion of dark solitons in trapped Bose–Einstein condensates”, Phys. Rev. Lett., 84:11 (2000), 2298–2301 | DOI

[19] V. V. Konotop, L. P. Pitaevskii, “Landau dynamics of a grey soliton in a trapped condensate”, Phys. Rev. Lett., 93:24 (2004), 240403, 4 pp. | DOI

[20] A. M. Kamchatnov, S. V. Korneev, “Dynamics of ring dark solitons in Bose–Einstein condensates and nonlinear optics”, Phys. Lett. A, 374:45 (2010), 4625–4628 | DOI

[21] A. M. Kamchatnov, D. V. Shaykin, “Propagation of generalized Korteweg–de Vries solitons along large-scale waves”, Phys. Rev. E, 108:5 (2023), 054205, 6 pp. | DOI | MR

[22] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[23] G. G. Stokes, “1895: The outskirts of the solitary wave”, Mathematical and Physical Papers, v. 5, Cambridge Univ. Press, Cambridge, 1905, 163–163 | DOI | MR

[24] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR

[25] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[26] D. V. Shaykin, A. M. Kamchatnov, “Propagation of wave packets along large-scale background waves”, Phys. Fluids, 35:6 (2023), 062108, 10 pp., arXiv: 2303.16592 | DOI

[27] A. M. Kamchatnov, “Asymptotic theory of not completely integrable soliton equations”, Chaos, 33:9 (2023), 093105, 12 pp. | DOI | MR

[28] A. M. Kamchatnov, D. V. Shaykin, “Quasiclassical integrability condition in AKNS scheme”, Physica D, 460 (2024), 134085, 6 pp., arXiv: 2308.12518 | DOI

[29] L. V. Ovsyannikov, “Modeli dvukhsloinoi ‘melkoi vody’ ”, PMTF, 1979, no. 2, 3–14 | DOI | MR