On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 32-43
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions of the cubically nonlinear Schrödinger equation. For a certain class of solutions of the form $\Psi(t,z)=(f(t,z)+id(z))e^{i\phi(z)}$ with $f,\phi,d\in\mathbb{R}$, we prove that they are nonexistent in the general case $f_z\neq 0$, $f_t\neq 0$, $d_z\neq 0$. In the three nongeneric cases ($f_z\neq 0$), ($f_t\neq 0$, $f_t=0$, $d_z=0$), and ($f_z=0$, $f_t\neq 0$), we present a two-parameter set of solutions, for which we find the constraints specifying real bounded and unbounded solutions.
Keywords: nonlinear Schrödinger equation, Weierstrass elliptic functions, traveling wave.
@article{TMF_2024_219_1_a3,
     author = {H. W. Sch\"urmann and V. S. Serov},
     title = {On the~existence of certain elliptic solutions of the~cubically nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--43},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a3/}
}
TY  - JOUR
AU  - H. W. Schürmann
AU  - V. S. Serov
TI  - On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 32
EP  - 43
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a3/
LA  - ru
ID  - TMF_2024_219_1_a3
ER  - 
%0 Journal Article
%A H. W. Schürmann
%A V. S. Serov
%T On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 32-43
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a3/
%G ru
%F TMF_2024_219_1_a3
H. W. Schürmann; V. S. Serov. On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a3/

[1] R. Conte, M. Musette, T. W. Ng, C. Wu, “All meromorphic traveling waves of cubic and quintic complex Ginzburg–Landau equations”, Phys. Lett. A, 481 (2023), 129024, 15 pp. | DOI | MR

[2] A. N. W. Hone, “Non-existence of elliptic travelling wave solutions of the complex Ginzburg–Landau equation”, Phys. D, 205:1–4 (2005), 292–306 | DOI | MR

[3] S. Yu. Vernov, “Dokazatelstvo otsutstviya ellipticheskikh reshenii kubicheskogo kompleksnogo uravneniya Ginzburga–Landau”, TMF, 146:1 (2006), 161–171 | DOI | DOI | MR | Zbl

[4] S. Yu. Vernov, “Elliptic solutions of the quintic complex one-dimensional Ginzburg–Landau equation”, J. Phys. A: Math. Theor., 40:32 (2007), 9833–9844 | DOI | MR

[5] H. W. Schürmann, “Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation”, Phys. Rev. E, 54:4 (1996), 4312–4320 | DOI

[6] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl

[7] N. N. Akhmediev, A. Ankevich, Solitony. Nelineinye impulsy i puchki, Fizmatlit, M., 2003

[8] K. Weierstrass, “Transformation des Differentials”, Mathematische Werke, v. 5, ed. J. Knoblauch, Johnson, New York, 1915, 4–16; Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, Физматлит, М., 1963 | MR

[9] K. Chandrasekharan, Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer, Berlin, 1985 | DOI | MR

[10] H. W. Schürmann, V. S. Serov, “Theory of TE-polarized waves in a lossless cubic-quintic nonlinear planar waveguide”, Phys. Rev. A, 93:6 (2016), 063802, 8 pp. | DOI

[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[12] M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, N. Akhmediev, “Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band”, Phys. Rev. A, 101:2 (2020), 023843, 11 pp. | DOI | MR

[13] G. Vanderhaegen, C. Naveau, P. Szriftgiser et al., “ ‘Extraordinary’ modulation instability in optics and hydrodynamics”, Proc. Nat. Acad. Sci. USA, 118:14 (2021), e2019348118, 7 pp. | DOI | MR

[14] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, “Extreme waves that appear from nowhere: on the nature of rogue waves”, Phys. Lett. A, 373:25 (2009), 2137–2145 | DOI | MR

[15] G. Vanderhaegen, P. Szriftgiser, C. Naveau et al., “Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers”, Optics Lett., 45:13 (2020), 3757–3760 | DOI

[16] J. Chen, D. E. Pelinovsky, R. E. White, “Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation”, Phys. Rev. E, 100:5 (2019), 052219, 18 pp. | DOI | MR