Yang--Baxter equation in all dimensions and universal qudit
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct solutions of the Yang–Baxter equation in any dimension $d\geqslant 2$ by directly generalizing the previously found solutions for $d=2$. We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into $2$-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all $1$-qudit gates, to form a universal set of quantum logic gates.
Keywords: Yang–Baxter equation, qudit, quantum logic gate, universal gate.
@article{TMF_2024_219_1_a2,
     author = {A. Pourkia},
     title = {Yang--Baxter equation in all dimensions and universal qudit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {219},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/}
}
TY  - JOUR
AU  - A. Pourkia
TI  - Yang--Baxter equation in all dimensions and universal qudit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 17
EP  - 31
VL  - 219
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/
LA  - ru
ID  - TMF_2024_219_1_a2
ER  - 
%0 Journal Article
%A A. Pourkia
%T Yang--Baxter equation in all dimensions and universal qudit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 17-31
%V 219
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/
%G ru
%F TMF_2024_219_1_a2
A. Pourkia. Yang--Baxter equation in all dimensions and universal qudit. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/