Yang–Baxter equation in all dimensions and universal qudit
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct solutions of the Yang–Baxter equation in any dimension $d\geqslant 2$ by directly generalizing the previously found solutions for $d=2$. We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into $2$-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all $1$-qudit gates, to form a universal set of quantum logic gates.
Keywords: Yang–Baxter equation, qudit, quantum logic gate, universal gate.
@article{TMF_2024_219_1_a2,
     author = {A. Pourkia},
     title = {Yang{\textendash}Baxter equation in all dimensions and universal qudit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--31},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/}
}
TY  - JOUR
AU  - A. Pourkia
TI  - Yang–Baxter equation in all dimensions and universal qudit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 17
EP  - 31
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/
LA  - ru
ID  - TMF_2024_219_1_a2
ER  - 
%0 Journal Article
%A A. Pourkia
%T Yang–Baxter equation in all dimensions and universal qudit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 17-31
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/
%G ru
%F TMF_2024_219_1_a2
A. Pourkia. Yang–Baxter equation in all dimensions and universal qudit. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/

[1] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., 65:3–4 (1944), 117–149 | DOI | MR

[2] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR

[3] R. J. Baxter, “Solvable eight-vertex model on an arbitrary planar lattice”, Phylos. Trans. Roy. Soc. London Ser. A, 289:1359 (1978), 315–346 | DOI | MR

[4] M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, 10, World Sci., Singapore, 1990 | DOI | MR

[5] J. Hietarinta, “All solutions to the constant quantum Yang–Baxter equation in two dimensions”, Phys. Lett. A, 165:3 (1992), 245–251 | DOI | MR

[6] J. H. H. Perk, H. Au-Yang, “Yang–Baxter equations”, Encyclopedia of Mathematical Physics, v. 5, eds. J.-P. Françoise, G. L. Naber, S. T. Tsou, Elsevier, Oxford, 2006, 465–473 | DOI | MR

[7] P. K. Aravind, “Borromean entanglement of the GHZ state”, Potentiality, Entanglement and Passion-at-a-Distance, Boston Studies in the Philosophy of Science, 194, eds. R. S. Cohen, M. Horne, J. Stachel, Springer, Dordrecht, 1997, 53–59 | DOI | MR

[8] H. A. Dye, “Unitary solutions to the Yang–Baxter equation in dimension four”, Quantum Inf. Process., 2:1 (2003), 117–152 | DOI

[9] L. H. Kauffman, S. J. Lomonaco, Jr., “Quantum entanglement and topological entanglement”, New J. Phys., 4 (2002), 73, 18 pp. ; “Braiding operators are universal quantum gates”, 6 (2004), 134, 41 pp. | DOI | MR | DOI

[10] Y. Zhang, L. H. Kauffman, M.-L. Ge, “Universal quantum gates, Yang–Baxterizations and Hamiltonians”, Int. J. Quantum Inf., 3:4 (2005), 669–678 | DOI

[11] J.-L. Chen, K. Xue, M.-L. Ge, “Braiding transformation, entanglement swapping, and Berry phase in entanglement space”, Phys. Rev. A, 76:4 (2007), 042324, 6 pp. | DOI

[12] Y. Zhang, M.-L. Ge, “GHZ states, almost-complex structure and Yang–Baxter equation”, Quantum Inf. Process., 6:5 (2007), 363–379 | DOI | MR

[13] M.-L. Ge, K. Xue, R.-Y. Zhang, Q. Zhao, “Yang–Baxter equations and quantum entanglements”, Quantum Inf. Process., 15:12 (2016), 5211–5242 | DOI | MR

[14] C.-L. Ho, A. I. Solomon, C.-H. Oh, “Quantum entanglement, unitary braid representation and Temperley–Lieb algebra”, Europhys. Lett., 92:3 (2010), 30002, 5 pp. | DOI

[15] E. Pinto, M. A. S. Trindade, J. D. M. Vianna, “Quasitriangular Hopf algebras, braid groups and quantum entanglement”, Int. J. Quantum Inf., 11:7 (2013), 13500652, 13 pp. | DOI | MR

[16] Mo-Lin Ge, Li-Vei Yui, Kan Syue, Tsin Chzhao, “Resheniya uravneniya Yanga–Bakstera, svyazannye s topologicheskim bazisom, i ikh prilozheniya v teorii kvantovoi informatsii”, TMF, 181:1 (2014), 19–38 | DOI | DOI | MR

[17] G. Alagic, M. Jarret, S. P. Jordan, “Yang–Baxter operators need quantum entanglement to distinguish knots”, J. Phys. A: Math. Theor., 49:7 (2016), 075203, 12 pp. | DOI | MR

[18] A. Pourkia, J. Batle, “Cyclic groups and quantum logic gates”, Ann. Phys., 373 (2016), 10–27 | DOI | MR

[19] K. Zhang, Y. Zhang, “Quantum teleportation and Birman–Murakami–Wenzl algebra”, Quantum Inf. Process., 16:2 (2017), 52, 34 pp. | DOI | MR

[20] V. F. R. Jones, “A polynomial invariant for links via von Neumann algebras”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 | DOI | MR | Zbl

[21] V. G. Turaev, “The Yang–Baxter equation and invariants of links”, Invent. Math., 92:3 (1988), 527–553 | DOI | MR

[22] Y. Cheng, M.-L. Ge, K. Xue, “Yang–Baxterization of braid group representation”, Commun. Math. Phys., 136:1 (1991), 195–208 | DOI

[23] Ch. Kassel, “Quantum Groups”, Graduate Texts in Mathematics, 155, Springer, New York, 1995 | DOI | MR | Zbl

[24] M. Freedman, A. Kitaev, M. J. Larsen, Z. Wang, “Topological quantum computation”, Bull. Amer. Math. Soc. (N. S.), 40:1 (2003), 31–38 | DOI | MR

[25] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, “Non-Abelian anyons and topological quantum computation”, Rev. Modern Phys., 80:3 (2008), 1083–1159 | DOI | MR

[26] N. Kolganov, An. Morozov, “Quantum $\mathscr{R}$-matrices as universal qubit gates”, Pisma v ZhETF, 111:9 (2020), 623–624

[27] N. Kolganov, S. Mironov, An. Morozov, “Large $k$ topological quantum computer”, Nucl. Phys. B, 987 (2023), 116072, 17 pp. | DOI | MR

[28] A. Barenco, C. H. Bennett, R. Cleve et al., “Elementary gates for quantum computation”, Phys. Rev. A, 52:5 (1995), 3457–3467 | DOI

[29] J.-L. Brylinski, R. Brylinski, “Universal quantum gates”, Mathematics of Quantum Computation, eds. R. K. Brylinski, G. Chen, Chapman and Hall, Boca Raton, FL, 2002, 101–116 | MR

[30] E. C. Rowell, Y. Zhang, Y.-S. Wu, M.-L. Ge, “Extraspecial two-groups, generalized Yang–Baxter equations and braiding quantum gates”, Quantum Inf. Comput., 10:7–8 (1010), 685–702 | MR

[31] R. S. Chen, “Generalized Yang–Baxter equations and braiding quantum gates”, J. Knot Theory Ramifications, 21:9 (2012), 1250087, 18 pp. | DOI | MR

[32] S. Khachatryan, “On the solutions to the multi-parametric Yang–Baxter equations”, Nucl. Phys. B, 883 (2014), 629–655 | DOI | MR

[33] K. Hao, J. Cao, G.-L. Li, W.-L. Yang, K. Shi, Y. Wang, “Exact solution of an $su(n)$ spin torus”, J. Stat. Mech. Theory Exp., 2016:7 (2016), 073104, 19 pp. | DOI | MR

[34] C.-L. Ho, T. Deguchi, “Multi-qudit states generated by unitary braid quantum gates based on Temperley–Lieb algebra”, Europhys. Lett., 118:4 (2017), 40001, 9 pp., arXiv: 1611.06772 | DOI

[35] M. de Leeuw, A. Pribytok, P. Ryan, “Classifying integrable spin-1/2 chains with nearest neighbour interactions”, J. Phys. A: Math. Theor., 52:50 (2019), 505201, 17 pp. | DOI | MR

[36] T. Gombor, B. Pozsgay, “Integrable spin chains and cellular automata with medium-range interaction”, Phys. Rev. E, 104:5 (2021), 054123, 30 pp. | DOI | MR

[37] V. G. Bardakov, D. V. Talalaev, “Rasshireniya mnozhestv Yanga–Bakstera”, TMF, 215:2 (2023), 176–189 | DOI | DOI | MR

[38] D. Kaszlikowski, D. K. L. Oi, M. Christand et al., “Quantum cryptography based on qutrit Bell inequalities”, Phys. Rev. A., 67:1 (2003), 012310, 4 pp. | DOI

[39] B. P. Lanyon, M. Barbieri, M. P. Almeida et al., “Simplifying quantum logic using higher-dimensional Hilbert spaces”, Nature Phys., 5:2 (2008), 134–140 | DOI

[40] M. Neeley, M. Ansmann, R. C. Bialczak et al., “Emulation of a quantum spin with a superconducting phase qudit”, Science, 325:5941 (2009), 722–725 | DOI

[41] M. Kues, C. Reimer, P. Roztocki et al., “On-chip generation of high-dimensional entangled quantum states and their coherent control”, Nature, 546:7660 (2017), 622–626 | DOI

[42] A. R. Shlyakhov, V. V. Zemlyanov, M. V. Suslov, A. V. Lebedev, G. S. Paraoanu, G. B. Lesovik, G. Blatter, “Quantum metrology with a transmon qutrit”, Phys. Rev. A., 97:2 (2018), 022115, 9 pp. | DOI

[43] V. A. Soltamov, C. Kasper, A. V. Poshakinskiy et al., “Excitation and coherent control of spin qudit modes in silicon carbide at room temperature”, Nature Commun., 10 (2019), 1678, 8 pp. | DOI

[44] Y. Wang, Z. Hu, B. C. Sanders, S. Kais, “Qudits and high-dimensional quantum computing”, Front. Phys., 8 (2020), 589504, 24 pp. | DOI