Yang--Baxter equation in all dimensions and universal qudit
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct solutions of the Yang–Baxter equation in any dimension $d\geqslant 2$ by directly generalizing the previously found solutions for $d=2$. We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into $2$-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all $1$-qudit gates, to form a universal set of quantum logic gates.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Yang–Baxter equation, qudit, quantum logic gate, universal gate.
                    
                  
                
                
                @article{TMF_2024_219_1_a2,
     author = {A. Pourkia},
     title = {Yang--Baxter equation in all dimensions and universal qudit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {219},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/}
}
                      
                      
                    A. Pourkia. Yang--Baxter equation in all dimensions and universal qudit. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a2/
