@article{TMF_2024_219_1_a10,
author = {S. Siouane and A. Boumali and A. Guvendi},
title = {Superstatistical properties of {the~Dirac} oscillator with gamma, lognormal, and {F} distributions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--180},
year = {2024},
volume = {219},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a10/}
}
TY - JOUR AU - S. Siouane AU - A. Boumali AU - A. Guvendi TI - Superstatistical properties of the Dirac oscillator with gamma, lognormal, and F distributions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 163 EP - 180 VL - 219 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a10/ LA - ru ID - TMF_2024_219_1_a10 ER -
%0 Journal Article %A S. Siouane %A A. Boumali %A A. Guvendi %T Superstatistical properties of the Dirac oscillator with gamma, lognormal, and F distributions %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 163-180 %V 219 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a10/ %G ru %F TMF_2024_219_1_a10
S. Siouane; A. Boumali; A. Guvendi. Superstatistical properties of the Dirac oscillator with gamma, lognormal, and F distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 163-180. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a10/
[1] M. Moshinsky, A. Szczepaniak, “The Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L817–L819 | DOI | MR
[2] A. Boumali, “On the eigensolutions of the one-dmensional Kemmer oscillator”, Turkish J. Phys., 31:6 (2007), 307–316
[3] D. Itô, K. Mori, E. Carriere, “An example of dynamical systems with linear trajectory”, Nuovo Cimento A, 51:4 (1967), 1119–1121 | DOI
[4] A. Guvendi, “Relativistic Landau levels for a fermion-antifermion pair interacting through Dirac oscillator interaction”, Eur. Phys. J. C, 81:2 (2021), 100, 7 pp. | DOI
[5] A. Bermudez, M. A. Martin-Delgado, E. Solano, “Exact mapping of the $2+1$ Dirac oscillator onto the Jaynes–Cummings model: Ion-trap experimental proposal”, Phys. Rev. A, 76:4 (2007), 041801, 4 pp. | DOI
[6] C. Beck, E. G. D. Cohen, “Superstatistics”, Phys. A, 322:1–4 (2003), 267–275 | DOI | MR
[7] E. G. D. Cohen, “Superstatistics”, Phys. D, 193:1–4 (2004), 35–52 | DOI | MR
[8] A. Guvendi, A. Boumali, “Superstatistical properties of a fermion-antifermion pair interacting via Dirac oscillator coupling in one-dimension”, Eur. Phys. J. Plus, 136:11 (2021), 1098, 18 pp. | DOI
[9] C. Beck, “Generalized statistical mechanics for superstatistical systems”, Philos. Trans. R. Soc. London Ser. A, 369:1935 (2011), 453–465 | DOI | MR
[10] T. Yamano, “Thermodynamical and informational structure of superstatistics”, Prog. Theor. Phys. Suppl., 162 (2006), 87–96 | DOI | MR
[11] A. Boumali, F. Serdouk, S. Dilmi, “Superstatistical properties of the one-dimensional Dirac oscillator”, Phys. A, 553 (2020), 124207, 13 pp. | DOI | MR
[12] M. Labidi, A. Boumali, A. Ndem Ikot, “Superstatistics of the one-dimensional Klein–Gordon oscillator with energy–dependent potentials”, Rev. Mexicana Fís., 66:5 (2020), 671–682 | DOI | MR
[13] C. Tsallis, “Nonextensive statistical mechanics and thermodynamics: Historical background and present status”, Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics, 560, eds. S. Abe, Y. Okamoto, Springer, Berlin, 2001 | DOI
[14] C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, 2009 | DOI
[15] H. Touchette, C. Beck, “Asymptotics of superstatistics”, Phys. Rev. E, 71:1 (2005), 016131, 6 pp. | DOI
[16] C. Tsallis, A. M. C. Souza, “Constructing a statistical mechanics for Beck–Cohen superstatistics”, Phys. Rev. E, 67:2 (2003), 026106, 5 pp. | DOI
[17] S. Sargolzaeipor, H. Hassanabadi, W. S. Chung, “$q$-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field”, Eur. Phys. J. Plus, 133:1 (2018), 5, 11 pp. | DOI
[18] W. S. Chung, H. Hassanabadi, “Superstatistics with $q$-deformed Dirac delta distribution and interacting gas model”, Phys. A, 516 (2019), 496–501 | DOI | MR
[19] W. S. Chung, H. Hassanabadi, “Fermi energy in the $q$-deformed quantum mechanics”, Mod. Phys. Lett. A, 35:11 (2020), 2050074, 15 pp. | DOI | Zbl
[20] A. Ayala, M. Hentschinski, L. A. Hernández, M. Loewe, R. Zamora, “Superstatistics and the effective QCD phase diagram”, Phys. Rev. D, 98:11 (2018), 114002, 8 pp. | DOI | MR
[21] P. O. Amadi, C. O. Edet, U. S. Okorie, G. T. Osobonye, G. J. Rampho, A. N. Ikot, Superstatistics of the screened Kratzer potential with modified Dirac delta and uniform distributions, arXiv: 2001.10496
[22] J. D. Castano-Yepes, C. F. Ramirez-Gutierrez, “Superstatistics and quantum entanglement in the isotropic spin-1/2 $XX$ dimer from a nonadditive thermodynamics perspective”, Phys. Rev. E, 104:2 (2021), 024139, 7y pp. | DOI | MR
[23] J. D. Castaño-Yepes, D. A. Amor-Quiroz, “Super-statistical description of thermo-magnetic properties of a system of 2D GaAs quantum dots with gaussian confinement and Rashba spin-orbit interaction”, Phys. A, 548 (2020), 123871, 11 pp. | DOI | MR
[24] J. D. Castaño-Yepes, I. A. Lujan-Cabrera, C. F. Ramirez-Gutierrez, “Comments on Superstatistical properties of the one-dimensional Dirac oscillator by Abdelmalek Boumali et al.”, Phys. A, 580 (2021), 125206, 7 pp. | DOI | MR
[25] J. Fuentes, O. Obregón, A superstatistical formulation of complexity measures, arXiv: 2101.09147
[26] C. Beck, “Superstatistics in high-energy physics”, Eur. Phys. J. A, 40:3 (2009), 267–273 | DOI
[27] A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators”, Electronic J. Theor. Phys., 12:32 (2015), 1–10, arXiv: 1409.6205
[28] A. Boumali, H. Hassanabadi, “The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field”, Eur. Phys. J. Plus, 128:10 (2013), 124, 13 pp. | DOI
[29] M. Moshinsky, Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, 9, Harwood Academic Publ., Amsterdam, 1996 | Zbl
[30] M. H. Pacheco, R. V. Maluf, C. A. S. Almeida, R. R. Landim, “Three-dimensional Dirac oscillator in a thermal bath”, Europhys. Lett., 108:1 (2014), 10005, arXiv: 1406.5114 | DOI
[31] V. Santos, R. V. Maluf, C. A. S. Almeida, “Ann. Phys.”, Thermodynamical properties of graphene in noncommutative phase-space, 349 (2014), 402–410 | DOI
[32] A. Boumali, “Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator”, Phys. Scr., 90:4 (2015), 045702 | DOI
[33] M. H. Pacheco, R. R. Landim, C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath”, Phys. Lett. A, 311:2–3 (2003), 93–96 | DOI | MR
[34] V. G. Kats, P. Chen, Kvantovyi analiz, MTsNMO, M., 2005 | DOI | MR
[35] R. Aski, P. Roi, Dzh. Endryus, Spetsialnye funktsii, MTsNMO, M., 2013 | MR
[36] P. Erdős, S. S. Wagstaff, Jr., “The fractional parts of the Bernoulli numbers”, Illinois J. Math., 24:1 (1980), 104–112 | DOI | MR
[37] D. Elliot, “The Euler–Maclaurin formula revisited”, ANZIAM J., 40 (1998), E27–E76 | DOI