Keywords: Bäcklund transformation, Josephson model.
@article{TMF_2024_219_1_a1,
author = {V. V. Tsegel'nik},
title = {On the~properties of solutions of a~system of two nonlinear differential equations associated with {the~Josephson} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {12--16},
year = {2024},
volume = {219},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/}
}
TY - JOUR AU - V. V. Tsegel'nik TI - On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 12 EP - 16 VL - 219 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/ LA - ru ID - TMF_2024_219_1_a1 ER -
%0 Journal Article %A V. V. Tsegel'nik %T On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 12-16 %V 219 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/ %G ru %F TMF_2024_219_1_a1
V. V. Tsegel'nik. On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/
[1] N. P. Erugin, “Analiticheskaya teoriya i problemy veschestvennoi teorii differentsialnykh uravnenii, svyazannye s pervym metodom i metodami analiticheskoi teorii”, Differents. uravneniya, 3:11 (1967), 1821–1863 | MR | Zbl
[2] V. I. Gromak, “K teorii uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl
[3] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR
[4] V. M. Bukhshtaber, S. I. Tertychnyi, “Semeistvo yavnykh reshenii uravneniya rezistivnoi modeli perekhoda Dzhozefsona”, TMF, 176:2 (2013), 163–188 | DOI | DOI | MR | Zbl
[5] V. M. Bukhshtaber, A. A. Glutsyuk, “Sobstvennye funktsii monodromii uravnenii Goina i granitsy zon fazovogo zakhvata v modeli silnoshuntirovannogo effekta Dzhozefsona”, Poryadok i khaos v dinamicheskikh sistemakh, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Trudy MIAN, 297, MAIK “Nauka/Interperiodika”, M., 2017, 62–104 | DOI | DOI | MR
[6] Yu. P. Bibilo, A. A. Glutsyuk, “O semeistvakh peremychek v modeli silno shuntirovannogo dzhozefsonovskogo perekhoda”, UMN, 76:2 (2021), 179–180 | DOI | DOI | MR | Zbl
[7] Y. Bibilo, A. A. Glutsyuk, “On families of constrictions in model of overdamped Josephson junstion and Painlevé 3 equation”, Nonlinearity, 35:10 (2022), 5427–5480 | DOI | MR
[8] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939 | MR
[9] V. I. Gromak, “O resheniyakh pyatogo uravneniya Penleve”, Differents. uravneniya, 12:4 (1976), 740–742 | MR | Zbl
[10] M. Jimbo, “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18:3 (1982), 1137–1161 | DOI | MR
[11] V. I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter, Berlin, 2002 | DOI | MR
[12] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izdatelskii tsentr BGU, Minsk, 2007
[13] A. E. Milne, P. A. Clarkson, A. P. Bassom, “Bäcklund transformations and solution hierarchies for the third Painlevé equation”, Stud. Appl. Math., 98:2 (1997), 139–194 | DOI | MR
[14] V. E. Adler, “Nonlinear chains and Painlevé equations”, Phys. D, 73:4 (1994), 335–351 | DOI | MR