On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 12-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the analytic properties of solutions of a system of two first-order nonlinear differential equations with an arbitrary parameter $l$ associated with an overdamped Josephson model. We reduce this system to a system of differential equations that is equivalent to the fifth Painlevé equation with the sets of parameters $$ \biggl(\frac{(1-l)^2}{8}, -\frac{(1-l)^2}{8},0,-2\biggr), \; \biggl(\frac{l^2}{8}, -\frac{l^2}{8},0,-2\biggr). $$ We show that the solution of the third Painlevé equation with the parameters $(-2l, 2l-2,1,-1)$ can be represented as the ratio of two linear fractional transformations of the solutions of the fifth Painlevé equation (with the parameters in the above sequence) connected by a Bäcklund transformation.
Mots-clés : third Painlevé equation, fifth Painlevé equation
Keywords: Bäcklund transformation, Josephson model.
@article{TMF_2024_219_1_a1,
     author = {V. V. Tsegel'nik},
     title = {On the~properties of solutions of a~system of two nonlinear differential equations associated with {the~Josephson} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--16},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 12
EP  - 16
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/
LA  - ru
ID  - TMF_2024_219_1_a1
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 12-16
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/
%G ru
%F TMF_2024_219_1_a1
V. V. Tsegel'nik. On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/

[1] N. P. Erugin, “Analiticheskaya teoriya i problemy veschestvennoi teorii differentsialnykh uravnenii, svyazannye s pervym metodom i metodami analiticheskoi teorii”, Differents. uravneniya, 3:11 (1967), 1821–1863 | MR | Zbl

[2] V. I. Gromak, “K teorii uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl

[3] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR

[4] V. M. Bukhshtaber, S. I. Tertychnyi, “Semeistvo yavnykh reshenii uravneniya rezistivnoi modeli perekhoda Dzhozefsona”, TMF, 176:2 (2013), 163–188 | DOI | DOI | MR | Zbl

[5] V. M. Bukhshtaber, A. A. Glutsyuk, “Sobstvennye funktsii monodromii uravnenii Goina i granitsy zon fazovogo zakhvata v modeli silnoshuntirovannogo effekta Dzhozefsona”, Poryadok i khaos v dinamicheskikh sistemakh, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Trudy MIAN, 297, MAIK “Nauka/Interperiodika”, M., 2017, 62–104 | DOI | DOI | MR

[6] Yu. P. Bibilo, A. A. Glutsyuk, “O semeistvakh peremychek v modeli silno shuntirovannogo dzhozefsonovskogo perekhoda”, UMN, 76:2 (2021), 179–180 | DOI | DOI | MR | Zbl

[7] Y. Bibilo, A. A. Glutsyuk, “On families of constrictions in model of overdamped Josephson junstion and Painlevé 3 equation”, Nonlinearity, 35:10 (2022), 5427–5480 | DOI | MR

[8] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939 | MR

[9] V. I. Gromak, “O resheniyakh pyatogo uravneniya Penleve”, Differents. uravneniya, 12:4 (1976), 740–742 | MR | Zbl

[10] M. Jimbo, “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18:3 (1982), 1137–1161 | DOI | MR

[11] V. I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter, Berlin, 2002 | DOI | MR

[12] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izdatelskii tsentr BGU, Minsk, 2007

[13] A. E. Milne, P. A. Clarkson, A. P. Bassom, “Bäcklund transformations and solution hierarchies for the third Painlevé equation”, Stud. Appl. Math., 98:2 (1997), 139–194 | DOI | MR

[14] V. E. Adler, “Nonlinear chains and Painlevé equations”, Phys. D, 73:4 (1994), 335–351 | DOI | MR