On the~properties of solutions of a~system of two nonlinear differential equations associated with the~Josephson model
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 12-16
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate the analytic properties of solutions of a system of two first-order nonlinear differential equations with an arbitrary parameter $l$ associated with an overdamped Josephson model. We reduce this system to a system of differential equations that is equivalent to the fifth Painlevé equation with the sets of parameters 
$$ \biggl(\frac{(1-l)^2}{8}, -\frac{(1-l)^2}{8},0,-2\biggr), \; \biggl(\frac{l^2}{8}, -\frac{l^2}{8},0,-2\biggr). $$
We show that the solution of the third Painlevé equation with the parameters $(-2l, 2l-2,1,-1)$ can be represented as the ratio of two linear fractional transformations of the solutions of the fifth Painlevé equation (with the parameters in the above sequence) connected by a Bäcklund transformation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
third Painlevé equation, fifth Painlevé equation, Bäcklund transformation, Josephson model.
                    
                  
                
                
                @article{TMF_2024_219_1_a1,
     author = {V. V. Tsegel'nik},
     title = {On the~properties of solutions of a~system of two nonlinear differential equations associated with {the~Josephson} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--16},
     publisher = {mathdoc},
     volume = {219},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Tsegel'nik TI - On the~properties of solutions of a~system of two nonlinear differential equations associated with the~Josephson model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 12 EP - 16 VL - 219 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/ LA - ru ID - TMF_2024_219_1_a1 ER -
%0 Journal Article %A V. V. Tsegel'nik %T On the~properties of solutions of a~system of two nonlinear differential equations associated with the~Josephson model %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 12-16 %V 219 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/ %G ru %F TMF_2024_219_1_a1
V. V. Tsegel'nik. On the~properties of solutions of a~system of two nonlinear differential equations associated with the~Josephson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a1/
