Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the cubic nonlinear Schrödinger equation with a large gradient of the initial function and a small dispersion parameter. The renormalization method is used to construct an asymptotic solution in the explicit form of integral convolution. An asymptotic analogue of the renormalization group property is established under scaling transformations determined by the dispersion parameter. In the case of a negative focusing coefficient, a clarifying expression is obtained for the asymptotic solution in terms of known elliptic special functions.
Keywords: cubic nonlinear Schrödinger equation, Cauchy problem, renormalization, asymptotic solution, elliptic functions.
@article{TMF_2024_219_1_a0,
     author = {S. V. Zakharov},
     title = {Cauchy problem for a~nonlinear {Schr\"odinger} equation with a~large initial gradient in the~weakly dispersive limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--11},
     year = {2024},
     volume = {219},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a0/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 3
EP  - 11
VL  - 219
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a0/
LA  - ru
ID  - TMF_2024_219_1_a0
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 3-11
%V 219
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a0/
%G ru
%F TMF_2024_219_1_a0
S. V. Zakharov. Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/TMF_2024_219_1_a0/

[1] Dzh. B. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl

[2] G. P. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996

[3] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, PMTF, 1968, no. 2, 86–94 | DOI

[4] R. J. Taylor, D. R. Baker, H. Ikezi, “Observation of collisionless electrostatic shocks”, Phys. Rev. Lett., 24:5 (1970), 206–209 | DOI

[5] V. E. Zakharov, “Kollaps lengmyurovskikh voln”, ZhETF, 62:5 (1972), 1745–1759

[6] E. D. Trifonov, “Nelineinoe nestatsionarnoe uravnenie Shredingera dlya zadachi o vzaimodeistvii boze-einshteinovskogo kondensata razrezhennykh gazov s elektromagnitnym polem”, TMF, 139:3 (2004), 449–461 | DOI | DOI | Zbl

[7] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, V. Schweikhard, “Dispersive and classical shock waves in bose-einstein condensates and gas dynamics”, Phys. Rev. A, 74:2 (2006), 023623, 24 pp. | DOI

[8] V. E. Zakharov, S. V. Manakov, “O polnoi integriruemosti nelineinogo uravneniya Shredingera”, TMF, 19:3 (1974), 332–343 | DOI | MR | Zbl

[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[10] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | DOI | MR | MR | Zbl | Zbl

[11] P. E. Zhidkov, “O razreshimosti zadachi Koshi i ustoichivosti nekotorykh reshenii nelineinogo uravneniya Shredingera”, Matem. modelirovanie, 1:10 (1989), 155–160 | MR | Zbl

[12] A. R. Its, “Asimptotika reshenii nelineinogo uravneniya Shredingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl

[13] V. Yu. Novokshenov, “Asimptotika pri $t \to\infty$ resheniya zadachi Koshi dlya nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 251:4 (1980), 799–801 | MR | Zbl

[14] R. F. Bikbaev, “Perestroika Uizema i vremennaya asimptotika resheniya nelineinogo uravneniya Shredingera s konechnozonnym povedeniem pri $x \to\pm\infty$”, Algebra i analiz, 2:3 (1990), 131–143 | MR | Zbl

[15] P. I. Naumkin, “Asimptotika pri bolshikh vremenakh reshenii nelineinogo uravneniya Shredingera”, Izv. RAN. Ser. matem., 61:4 (1997), 81–118 | DOI | DOI | MR | Zbl

[16] N. Hayashi, P. I. Naumkin, Y. Yamazaki, “Large time behavior of small solutions to subcritical derivative nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 130:3 (2002), 779–789 | DOI | MR

[17] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl | Zbl

[18] S. Jin, C. D. Levermore, D. W. McLaughlin, “The semiclassical limit of the defocusing NLS hierarchy”, Commun. Pure Appl. Math., 52:5 (1999), 613–654 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[19] B. Dubrovin, T. Grava, C. Klein, A. Moro, “On critical behaviour in systems of hamiltonian partial differential equations”, J. Nonlinear Sci., 25:3 (2015), 631–707 | DOI | MR

[20] E. V. Teodorovich, “Metod renormalizatsionnoi gruppy v zadachakh mekhaniki”, PMM, 68:2 (2004), 335–367 | DOI | MR

[21] V. F. Kovalev, D. V. Shirkov, “Funktsionalnaya avtomodelnost i renormgruppovaya simmetriya v matematicheskoi fizike”, TMF, 121:1 (1999), 66–88 | DOI | DOI | MR | Zbl

[22] J. Bricmont, A. Kupiainen, “Renormalizing partial differential equations”, Constructive Physics. Results in Field Theory, Statistical Mechanics and Condensed Matter Physics, Lecture Notes in Physics, 446, eds. V. Rivasseau, Springer, Berlin, 1995, 83–115 | MR

[23] J. Veysey, N. Goldenfeld, “Simple viscous flows: from boundary layers to the renormalization group”, Rev. Modern Phys., 79:3 (2007), 883–927 | DOI | MR

[24] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[25] S. V. Zakharov, “Renormalizatsiya v zadache Koshi dlya uravneniya Kortevega–de Friza”, TMF, 175:2 (2013), 173–177 | DOI | DOI | MR | Zbl

[26] S. V. Zakharov, “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 699–706 | DOI | MR

[27] D. V. Shirkov, “Renormgruppa i funktsionalnaya avtomodelnost v razlichnykh oblastyakh fiziki”, TMF, 60:2 (1984), 218–223 | DOI | MR

[28] R. Jenkins, “Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation”, Nonlinearity, 28:7 (2015), 2131–2180 | DOI | MR

[29] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii. Formuly, grafiki, tablitsy, Nauka, M., 1977 | MR

[30] R. F. Bikbaev, V. R. Kudashev, “Example of shock waves in unstable media: the focusing nonlinear Schrödinger equation”, Phys. Lett. A, 190:3–4 (1994), 255–258 | DOI | MR

[31] S. Fromm, J. Lenells, R. Quirchmayr, The defocusing nonlinear Schrödinger equation with step-like oscillatory initial data, arXiv: 2104.03714