Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 586-600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a liquid layer of a finite depth described by Euler's equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid.
Keywords: ice cover, solitary wave packet, central manifold, trajectories of liquid particles.
Mots-clés : bifurcation
@article{TMF_2024_218_3_a8,
     author = {A. T. Il'ichev and A. S. Savin and A. Yu. Shashkov},
     title = {Motion of particles in the field of nonlinear wave packets in a~liquid layer under an ice cover},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {586--600},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a8/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - A. S. Savin
AU  - A. Yu. Shashkov
TI  - Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 586
EP  - 600
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a8/
LA  - ru
ID  - TMF_2024_218_3_a8
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A A. S. Savin
%A A. Yu. Shashkov
%T Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 586-600
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a8/
%G ru
%F TMF_2024_218_3_a8
A. T. Il'ichev; A. S. Savin; A. Yu. Shashkov. Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 586-600. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a8/

[1] A. Korobkin, E. I. Părău, J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity”, Philos. Trans. R. Soc. London Ser. A, 369:1947 (2011), 2803–2812 | DOI | MR

[2] T. Khabakhpasheva, K. Shishmarev, A. Korobkin, “Large-time response of ice cover to a load moving along a frozen channel”, Appl. Ocean Res., 86 (2019), 154–156 | DOI

[3] I. V. Sturova, “Radiation of waves by a cylinder submerged in water with ice floe or polynya”, J. Fluid Mech., 784 (2015), 373–395 | DOI | MR

[4] I. V. Sturova, “Dvizhenie vneshnei nagruzki po polubeskonechnomu ledyanomu pokrovu v dokriticheskom rezhime”, Izv. RAN. MZhG, 2018, no. 1, 51–60 | DOI | DOI

[5] A. A. Savin, A. S. Savin, “Generatsiya voln na ledyanom pokrove pulsiruyuschim v zhidkosti istochnikom”, Izv. RAN. MZhG, 2013, no. 3, 24–30 | DOI

[6] A. T. Ilichev, A. A. Savin, A. S. Savin, “Ustanovlenie na ledyanom pokrove nad dvizhuschimsya v zhidkosti dipolem”, Dokl. RAN, 444:2 (2012), 156–159 | DOI

[7] D. Q. Lu, S. Q. Dai, “Flexural- and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth”, Internat. J. Eng. Sci., 46:11 (2008), 1183–1193 | DOI | MR

[8] V. A. Square, “Past, present and impedent hydroelastic challenges in the polar and subpolar seas”, Phil. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2813–2831 | DOI | MR

[9] A. V. Pogorelova, V. M. Kozin, A. A. Matyushina, “Issledovanie napryazhenno-deformirovannogo sostoyaniya ledyanogo pokrova pri vzlete i posadke na nego samoleta”, Prikl. mekh. tekhn. fiz., 56:5 (2015), 214–221 | DOI | DOI

[10] L. A. Tkacheva, “Vozdeistvie periodicheskoi nagruzki na plavayuschuyu upruguyu plastinu”, Izv. RAN. MZhG, 2005, no. 2, 132–146 | DOI | MR

[11] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. High order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR

[12] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution”, J. Fluid Mech., 188 (1988), 491–508 | DOI

[13] G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, 3, World Sci., Singapore, 1998 | DOI | MR

[14] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differ. Equ., 45:1 (1982), 113–127 | DOI | MR

[15] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR

[16] A. T. Ilichev, “Uedinennye volny v sredakh s dispersiei i dissipatsiei (obzor)”, Izv. RAN. MZhG, 2000, no. 2, 3–27 | DOI | MR

[17] E. Părău, F. Dias, “Nonlinear effects in the response of a floating ice plate to a moving load”, J. Fluid Mech., 460 (2002), 281–305 | DOI | MR

[18] A. T. Ilichev, A. S. Savin, A. Yu. Shashkov, “Traektorii chastits zhidkosti pod ledyanym pokrovom v pole uedinennoi izgibno-gravitatsionnoi volny”, Izv. vuzov. Radiofizika, 2024 (to appear)

[19] A. T. Il'ichev, V. Ja. Tomashpolskii, “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI | MR

[20] P. I. Plotnikov, J. F. Toland, “Modelling nonlinear hydroelastic waves”, Phil. Trans. R. Soc. London Ser. A, 369:1947 (2011), 2942–2956 | DOI | MR

[21] O. M. Fillips, Dinamika verkhnego sloya okeana, Gidrometeoizdat, L., 1980

[22] A. S. Monin, Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988 | DOI

[23] G. Stokes, “On the theory of oscillatory waves”, Trans. Cambridge Phil. Soc., 8 (1847), 441–455 | DOI

[24] A. A. Ochirov, Issledovanie zakonomernostei formirovaniya massoperenosa, initsiiruemogo volnovymi dvizheniyami zhidkosti, Dis. $\ldots$ fiz.-matem. nauk, YarGU im. P. G. Demidova, Yaroslavl, 2020

[25] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th International Symposium on Ice (Hamburg, Germany, August 27–31, 1984), v. II, IAHR, Hamburg, 1984, 287–296

[26] A. T. Ilichev, V. Ya. Tomashpolskii, “Solitonopodobnye struktury na poverkhnosti zhidkosti pod ledyanym pokrovom”, TMF, 182:2 (2015), 277–293 | DOI | DOI | MR

[27] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426), 85–138 | DOI | DOI | MR | Zbl

[28] M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer, London, 2011 | DOI | MR

[29] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003

[30] G. Iooss, M.-C. Pérouème, “Perturbed homoclinic solutions in reversible $1\,{:}\,1$ resonance vector fields”, J. Differ. Equ., 102:1 (1993), 62–88 | DOI | MR

[31] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscilations”, Phys. D, 65:4 (1993), 300–423 | DOI