@article{TMF_2024_218_3_a7,
author = {J. Wawrzycki},
title = {Causal perturbative {QED} and white noise},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {559--585},
year = {2024},
volume = {218},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a7/}
}
J. Wawrzycki. Causal perturbative QED and white noise. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 559-585. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a7/
[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR | MR
[2] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | MR | Zbl
[3] H. Epstein, V. Glaser, “The role of locality in perturbation theory”, Ann. Inst. H. Poincaré Sect. A, 19:3 (1973), 211–295 | MR
[4] M. Dütsch, F. Krahe, G. Scharf, “Interacting fields in finite QED”, Nuovo Cimento A, 103:6 (1990), 871–901 ; M. Dütsch, T. Hurth, F. Krahe, G. Scharf, “Causal construction of Yang–Mills theories”, 106:8 (1993), 1029–1041 ; M. Dütsch, T. Hurth, G. Scharf, “Causal construction of Yang–Mills theories IV. Unitarity”, 108:6 (1995), 737–773 | DOI | MR | DOI | MR | DOI | MR
[5] M. Dütsch, F. Krahe, G. Scharf, “Causal construction of Yang-Mills theories. II”, Nuovo Cimento A, 107:3 (1994), 375–406 | DOI | MR
[6] R. Striter, A. S. Vaitman, RST, spin i statistika i vse takoe ... , Nauka, M., 1966 | MR
[7] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, “Tauberovy teoremy dlya obobschennykh funktsii v shkale pravilno menyayuschikhsya funktsii i funktsionalov”, Publ. Inst. Math. (Beograd) (N. S.), 71:85 (2002), 123–132 | DOI | MR
[8] D. R. Grigore, “The standard model and its generalizations in the Epstein–Glaser approach to renormalization theory”, J. Phys. A: Math. Gen., 33:47 (2000), 8443–8476 | DOI | MR
[9] H. Epstein, V. Glaser, “Adiabatic limit in perturbation theory”, Renormalization Theory, NATO Advanced Study Institutes Series, 23, eds. G. Velo, A. S. Wightman, Springer, Dordrecht, 1976, 193–254 | DOI | MR
[10] N. Obata, “Operator calculus on vector-valued white noise functionals”, J. Funct. Anal., 121:1 (1994), 185–232 | DOI | MR
[11] J. Wawrzycki, “Causal perturbative QFT and white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 26:4 (2023), 2350012, 54 pp., arXiv: 2203.05884 | DOI | MR | Zbl
[12] Ya. V. Vavrzhitski, “Prichinno-perturbativnaya KTP Bogolyubova. Vzaimodeistvuyuschie polya v KED”, TMF, 211:3 (2022), 394–443 | DOI | DOI | MR
[13] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii. Vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR
[14] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR
[15] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | MR | Zbl
[16] P. Blanchard, R. Sénéor, “Green's functions for theories with massless particles (in perturbation theory)”, Ann. Inst. H. Poincaré Sect. A, 23:2 (1975), 147–209 | MR
[17] P. Duch, “Weak adiabatic limit in quantum field theories with massless particles”, Ann. Henri Poincaré, 19:3 (2018), 875–935 | DOI | MR
[18] A. Staruszkiewicz, “Quantum mechanics of phase and charge and quantization of the Coulomb field”, Ann. Phys., 190:2 (1989), 354–372 | DOI | MR
[19] S. L. Woronowicz, “A theorem on kernel in the theory of operator-valued distributions”, Studia Math., 39 (1971), 217–226 | DOI | MR
[20] P. P. Kulish, L. D. Faddeev, “Asimptoticheskie usloviya i infrakrasnye raskhodimosti v kvantovoi elektrodinamike”, TMF, 4:2 (1970), 153–170 | DOI | Zbl
[21] G. Scharf, Finite Quantum Electrodynamics, Springer, Berlin, Heidelberg, 2014 | DOI | MR