@article{TMF_2024_218_3_a6,
author = {M. G. Ivanov and A. Yu. Polushkin},
title = {Digital representation of continuous observables in quantum mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {537--558},
year = {2024},
volume = {218},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/}
}
TY - JOUR AU - M. G. Ivanov AU - A. Yu. Polushkin TI - Digital representation of continuous observables in quantum mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 537 EP - 558 VL - 218 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/ LA - ru ID - TMF_2024_218_3_a6 ER -
M. G. Ivanov; A. Yu. Polushkin. Digital representation of continuous observables in quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 537-558. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/
[1] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, D. Smith-Tone, Report of Post-Quantum Cryptography, NIST Internal Report 8105, National Institute of Standards and Technology, Gaithersburg, MD, 2016 | DOI
[2] P. W. Shor, J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol”, Phys. Rev. Lett., 85:2 (2000), 441-444 | DOI
[3] R. P. Feynman, “Simulation physics with computers”, Internat. J. Theor. Phys., 21:6–7 (1982), 467–488 | DOI | MR
[4] Google AI Quantum and Collaborators, “Hartree–Fock on a superconducting qubit quantum computer”, Science, 369:6507 (2020), 1084–1089 | DOI | MR
[5] Y. Ding, X. Chen, L. Lamata, E. Solano, M. Sanz, Implementation of a hybrid classical-quantum annealing algorithm for logistic network design, arXiv: 1906.10074
[6] M. G. Ivanov, “Dvoichnoe predstavlenie koordinaty i impulsa v kvantovoi mekhanike”, TMF, 196:1 (2018), 70–87 | DOI | DOI | MR
[7] M. G. Ivanov, A. Yu. Polushkin, “Ternary and binary representation of coordinate and momentum in quantum mechanics”, AIP Conf. Proc., 2362 (2021), 040002, 22 pp. | DOI
[8] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR | MR | Zbl
[9] J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. USA, 46:4 (1960), 570–579 | DOI | MR
[10] J. Katriel, “A nonlinear Bogoliubov transformation”, Phys. Lett. A, 307:1 (2003), 1–7 | DOI | MR
[11] I. Arraut, C. Segovia, “A $q$-deformation of the Bogoliubov transformations”, Phys. Lett. A, 382:7 (2018), 464–466 | DOI | MR
[12] M. G. Ivanov, V. A. Dudchenko, V. V. Naumov, “Number-theory renormalization of the vacuum energy”, p-Adic Num. Ultrametr. Anal. Appl., 15:4 (2023), 284–311 | DOI | MR
[13] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[14] W. Ehrenberg, R. E. Siday, “The refractive index in electron optics and the principles of dynamics”, Proc. Phys. Soc. B, 62:1 (1949), 8–21 | DOI
[15] Y. Aharonov, D. Bohm, “Significance of electromagnetic potentials in quantum theory”, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR
[16] M. G. Ivanov, “O formulirovke kvantovoi mekhaniki s dinamicheskim vremenem”, Izbrannye voprosy matematicheskoi fiziki i analiza, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Trudy MIAN, 285, MAIK “Nauka/Interperiodika”, M., 2014, 154–165 | DOI | DOI
[17] M. G. Ivanov, Kak ponimat kvantovuyu mekhaniku, RKhD, M.–Izhevsk, 2015
[18] M. G. Ivanov, “O edinstvennosti kvantovoi teorii izmerenii dlya tochnykh izmerenii s diskretnym spektrom”, Tr. MFTI, 8:1(29) (2016), 170–178