Digital representation of continuous observables in quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 537-558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To simulate quantum systems on classical or quantum computers, the continuous observables (e.g., coordinate and momentum or energy and time) must be reduced to discrete ones. In this paper, we consider the continuous observables represented in the positional systems as power series in the radix multiplied over the summands (“digits”), which turn out to be Hermitian operators with discrete spectrum. We investigate the obtained quantum mechanical operators of digits, the commutation relations between them, and the effects of the choice of a numeral system on lattices and representations. Renormalizations of diverging sums naturally occur in constructing the digital representation.
Keywords: quantum computing, qudit, digital expansion, renormalization.
@article{TMF_2024_218_3_a6,
     author = {M. G. Ivanov and A. Yu. Polushkin},
     title = {Digital representation of continuous observables in quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {537--558},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/}
}
TY  - JOUR
AU  - M. G. Ivanov
AU  - A. Yu. Polushkin
TI  - Digital representation of continuous observables in quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 537
EP  - 558
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/
LA  - ru
ID  - TMF_2024_218_3_a6
ER  - 
%0 Journal Article
%A M. G. Ivanov
%A A. Yu. Polushkin
%T Digital representation of continuous observables in quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 537-558
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/
%G ru
%F TMF_2024_218_3_a6
M. G. Ivanov; A. Yu. Polushkin. Digital representation of continuous observables in quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 537-558. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a6/

[1] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, D. Smith-Tone, Report of Post-Quantum Cryptography, NIST Internal Report 8105, National Institute of Standards and Technology, Gaithersburg, MD, 2016 | DOI

[2] P. W. Shor, J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol”, Phys. Rev. Lett., 85:2 (2000), 441-444 | DOI

[3] R. P. Feynman, “Simulation physics with computers”, Internat. J. Theor. Phys., 21:6–7 (1982), 467–488 | DOI | MR

[4] Google AI Quantum and Collaborators, “Hartree–Fock on a superconducting qubit quantum computer”, Science, 369:6507 (2020), 1084–1089 | DOI | MR

[5] Y. Ding, X. Chen, L. Lamata, E. Solano, M. Sanz, Implementation of a hybrid classical-quantum annealing algorithm for logistic network design, arXiv: 1906.10074

[6] M. G. Ivanov, “Dvoichnoe predstavlenie koordinaty i impulsa v kvantovoi mekhanike”, TMF, 196:1 (2018), 70–87 | DOI | DOI | MR

[7] M. G. Ivanov, A. Yu. Polushkin, “Ternary and binary representation of coordinate and momentum in quantum mechanics”, AIP Conf. Proc., 2362 (2021), 040002, 22 pp. | DOI

[8] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR | MR | Zbl

[9] J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. USA, 46:4 (1960), 570–579 | DOI | MR

[10] J. Katriel, “A nonlinear Bogoliubov transformation”, Phys. Lett. A, 307:1 (2003), 1–7 | DOI | MR

[11] I. Arraut, C. Segovia, “A $q$-deformation of the Bogoliubov transformations”, Phys. Lett. A, 382:7 (2018), 464–466 | DOI | MR

[12] M. G. Ivanov, V. A. Dudchenko, V. V. Naumov, “Number-theory renormalization of the vacuum energy”, p-Adic Num. Ultrametr. Anal. Appl., 15:4 (2023), 284–311 | DOI | MR

[13] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[14] W. Ehrenberg, R. E. Siday, “The refractive index in electron optics and the principles of dynamics”, Proc. Phys. Soc. B, 62:1 (1949), 8–21 | DOI

[15] Y. Aharonov, D. Bohm, “Significance of electromagnetic potentials in quantum theory”, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR

[16] M. G. Ivanov, “O formulirovke kvantovoi mekhaniki s dinamicheskim vremenem”, Izbrannye voprosy matematicheskoi fiziki i analiza, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Trudy MIAN, 285, MAIK “Nauka/Interperiodika”, M., 2014, 154–165 | DOI | DOI

[17] M. G. Ivanov, Kak ponimat kvantovuyu mekhaniku, RKhD, M.–Izhevsk, 2015

[18] M. G. Ivanov, “O edinstvennosti kvantovoi teorii izmerenii dlya tochnykh izmerenii s diskretnym spektrom”, Tr. MFTI, 8:1(29) (2016), 170–178