Quantifying irreversibility of channels
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 492-521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In contrast to unitary evolutions which are reversible, generic quantum processes (operations, quantum channels) are often irreversible. However, the degree of irreversibility of different channels are different, and it is desirable to have a quantitative characterization of irreversibility. In this work, by exploiting channel-state duality implemented by the Jamiołkowski–Choi isomorphism, we quantify irreversibility of channels via entropy of the Jamiołkowski–Choi states of the corresponding channels, and compare it with the notions of entanglement fidelity and entropy exchange. General properties of a reasonable measure of irreversibility are discussed from an intuitive perspective, and entropic measures of irreversibility are introduced. Several relations between irreversibility, entanglement fidelity, degree of non-unitality, and decorrelating power are established. Some measures of irreversibility for a variety of prototypical channels are evaluated explicitly, which reveal some information-theoretic aspects of the structure of channels from the perspective of irreversibility.
Keywords: channels, irreversibility, entropy, non-unitality, decorrelating power.
@article{TMF_2024_218_3_a4,
     author = {Shunlong Luo and Yuan Sun},
     title = {Quantifying irreversibility of channels},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--521},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/}
}
TY  - JOUR
AU  - Shunlong Luo
AU  - Yuan Sun
TI  - Quantifying irreversibility of channels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 492
EP  - 521
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/
LA  - ru
ID  - TMF_2024_218_3_a4
ER  - 
%0 Journal Article
%A Shunlong Luo
%A Yuan Sun
%T Quantifying irreversibility of channels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 492-521
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/
%G ru
%F TMF_2024_218_3_a4
Shunlong Luo; Yuan Sun. Quantifying irreversibility of channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 492-521. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/

[1] E. Fermi, Termodinamika, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1998

[2] E. Shredinger, Statisticheskaya termodinamika, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999

[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. V, Statisticheskaya fizika. Chast 1, Nauka, M., 1964 | MR

[4] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1991

[5] W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?”, Phys. Rev. D, 24:6 (1981), 1516–1525 | DOI | MR

[6] W. H. Zurek, “Decoherence and the transition from quantum to classical”, Physics Today, 44:10 (1991), 36–44 | DOI

[7] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin, 2003 | DOI

[8] M. Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys., 76:4 (2004), 1267–1305 | DOI

[9] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, Springer, Berlin, 2007 | DOI

[10] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2007 | DOI | MR

[11] M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | DOI | MR

[12] J. Watrous, The Theory of Quantum Information, Cambridge Univ. Press, Cambridge, 2018 | DOI

[13] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya, MNTsMO, M., 2010 | DOI | MR

[14] B. W. Schumacher, “Sending entanglement through noisy quantum channels”, Phys. Rev. A, 54:4 (1996), 2614–2628 | DOI

[15] B. Schumacher, M. A. Nielsen, “Quantum data processing and error correction”, Phys. Rev. A, 54:4 (1996), 2629–2635 | DOI | MR

[16] M. A. Nielsen, The entanglement fidelity and quantum error correction, arXiv: quant-ph/9606012

[17] H. Barnum, M. A. Nielsen, B. W. Schumacher, “Information transmission through a noisy quantum channel”, Phys. Rev. A, 57:6 (1998), 4153–4175 | DOI

[18] M. A. Nielsen, C. M. Caves, B. Schumacher, H. Barnum, “Information-theoretic approach to quantum error correction and reversible measurement”, Proc. R. Soc. London Ser. A, 454:1969 (1998), 277–304 | DOI | MR

[19] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation”, Phys. Rev. A, 60:3 (1999), 1888–1898 | DOI | MR

[20] M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation”, Phys. Lett. A, 303:4 (2002), 249–252 | DOI | MR

[21] S. Luo, “Information conservation and entropy change in quantum measurements”, Phys. Rev. A, 82:5 (2010), 052103, 5 pp. | DOI | MR

[22] S. Luo, N. Li, “Decoherence and measurement-induced correlations”, Phys. Rev. A, 84:5 (2011), 052309, 8 pp. | DOI

[23] H.-P. Breuer, E.-M. Laine, J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems”, Phys. Rev. Lett., 103:21 (2009), 210401, 4 pp. | DOI | MR

[24] Á. Rivas, S. F. Huelga, M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions”, Phys. Rev. Lett., 105:5 (2010), 050403, 4 pp. | DOI | MR

[25] S. Luo, S. Fu, H. Song, “Quantifying non-Markovianity via correlations”, Phys. Rev. A, 86:4 (2012), 044101, 4 pp. | DOI

[26] D. Chruściński, S. Maniscalco, “Degree of non-Markovianity of quantum evolution”, Phys. Rev. Lett., 112:12 (2014), 120404, 5 pp. | DOI

[27] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, “Non-Markovian dynamics in open quantum systems”, Rev. Mod. Phys., 88:2 (2016), 021002, 24 pp. | DOI

[28] H. Spohn, “Entropy production for quantum dynamical semigroups”, J. Math. Phys., 19:5 (1978), 1227–1230 | DOI | MR

[29] G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences”, Phys. Rev. E, 60:3 (1999), 2721–2726 | DOI

[30] L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR

[31] J. M. R. Parrondo, C. Van den Broeck, R. Kawai, “Entropy production and the arrow of time”, New J. Phys., 11:7 (2009), 073008, 14 pp. | DOI

[32] S. Deffner, E. Lutz, “Nonequilibrium entropy production for open quantum systems”, Phys. Rev. Lett., 107:14 (2011), 140404, 5 pp. | DOI

[33] T. Sagawa, M. Ueda, “Role of mutual information in entropy production under information exchanges”, New J. Phys., 15:12 (2013), 125012, 23 pp. | DOI | MR

[34] M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics”, Phys. Rev. X, 5:2 (2015), 021001, 11 pp., arXiv: 1410.4572 | DOI

[35] H. Hossein-Nejad, E. J. O'Reilly, A. Olaya-Castro, “Work, heat and entropy production in bipartite quantum systems”, New J. Phys., 17:7 (2015), 075014, 11 pp. | DOI

[36] M. Popovic, B. Vacchini, S. Campbell, “Entropy production and correlations in a controlled non-Markovian setting”, Phys. Rev. A, 98:1 (2018), 012130, 8 pp. | DOI

[37] J. P. Santos, L. C. Céleri, F. Brito, G. T. Landi, M. Paternostro, “Spin-phase-space-entropy production”, Phys. Rev. A, 97:5 (2018), 052123, 10 pp. | DOI

[38] K. Ptaszyǹski, M. Esposito, “Entropy production in open systems: The predominant role of intraenvironment correlations”, Phys. Rev. Lett., 123:20 (2019), 200603, 6 pp. | DOI

[39] P. Strasberg, A. Winter, “First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy”, PRX Quantum, 2:3 (2021), 030202, 26 pp. | DOI

[40] G. T. Landi, M. Paternostro, “Irreversible entropy production: From classical to quantum”, Rev. Mod. Phys., 93:3 (2021), 035008, 58 pp. | DOI | MR

[41] A. Belenchia, M. Paternostro, G. T. Landi, “Informational steady states and conditional entropy production in continuously monitored systems: The case of Gaussian systems”, Phys. Rev. A, 105:2 (2022), 022213, 14 pp. | DOI | MR

[42] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefinitness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278 | DOI | MR

[43] M.-D. Choi, “Completely positive maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290 | DOI | MR

[44] M. Jiang, S. Luo, S. Fu, “Channel-state duality”, Phys. Rev. A, 87:2 (2013), 022310, 8 pp. | DOI

[45] K. Życzkowski, I. Bengtsson, “On duality between quantum maps and quantum states”, Open Syst. Inf. Dyn., 11:1 (2004), 3-42 | DOI | MR

[46] Y. Sun, N. Li, S. Luo, “Fidelity-disturbance-entropy tradeoff in quantum channels”, Phys. Rev. A, 105:6 (2022), 062458, 9 pp. | DOI

[47] K. Banaszek, “Fidelity balance in quantum operations”, Phys. Rev. Lett., 86:7 (2001), 1366–1369 | DOI

[48] S. Luo, S. Fu, N. Li, “Decorrelating capabilities of operations with application to decoherence”, Phys. Rev. A, 82:5 (2010), 052122, 12 pp. | DOI

[49] G. Lüders, “Über die Zustandsänderung durch den Meßprozeß”, Ann. Physik, 443:5-8 (1950), 322–328 | DOI | MR

[50] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys, 45:6 (2004), 2171–2180 | DOI | MR | Zbl

[51] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357 | DOI | MR

[52] F. Buscemi, G. Chiribella, G. M. D'Ariano, “Inverting quantum decoherence by classical feedback from the environment”, Phys. Rev. Lett., 95:9 (2005), 090501, 4 pp. | DOI

[53] K. Brádler, P. Hayden, D. Touchette, M. M. Wilde, “Trade-off capacities of the quantum Hadamard channels”, Phys. Rev. A, 81:6 (2010), 062312, 23 pp. | DOI

[54] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70:13 (1993), 1895–1899 | DOI | MR | Zbl

[55] S. Popescu, “Bell's inequalities versus teleportation: What is nonlocality?”, Phys. Rev. Lett., 72:6 (1994), 797–799 | DOI | MR

[56] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A, 59:6 (1999), 4206–4216 | DOI | MR

[57] K. Banaszek, “Optimal quantum teleportation with an arbitrary pure state”, Phys. Rev. A, 62:2 (2000), 024301, 4 pp. | DOI

[58] G. Bowen, S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity”, Phys. Rev. Lett., 87:26 (2001), 267901, 4 pp. | DOI

[59] M. S. Pinsker, Informatsiya i informatsionnaya ustoichivost sluchainykh velichin i protsessov, Izd-vo AN SSSR, M., 1960 | MR | Zbl

[60] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR