@article{TMF_2024_218_3_a4,
author = {Shunlong Luo and Yuan Sun},
title = {Quantifying irreversibility of channels},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {492--521},
year = {2024},
volume = {218},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/}
}
Shunlong Luo; Yuan Sun. Quantifying irreversibility of channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 492-521. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a4/
[1] E. Fermi, Termodinamika, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1998
[2] E. Shredinger, Statisticheskaya termodinamika, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999
[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. V, Statisticheskaya fizika. Chast 1, Nauka, M., 1964 | MR
[4] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1991
[5] W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?”, Phys. Rev. D, 24:6 (1981), 1516–1525 | DOI | MR
[6] W. H. Zurek, “Decoherence and the transition from quantum to classical”, Physics Today, 44:10 (1991), 36–44 | DOI
[7] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin, 2003 | DOI
[8] M. Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys., 76:4 (2004), 1267–1305 | DOI
[9] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, Springer, Berlin, 2007 | DOI
[10] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2007 | DOI | MR
[11] M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | DOI | MR
[12] J. Watrous, The Theory of Quantum Information, Cambridge Univ. Press, Cambridge, 2018 | DOI
[13] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya, MNTsMO, M., 2010 | DOI | MR
[14] B. W. Schumacher, “Sending entanglement through noisy quantum channels”, Phys. Rev. A, 54:4 (1996), 2614–2628 | DOI
[15] B. Schumacher, M. A. Nielsen, “Quantum data processing and error correction”, Phys. Rev. A, 54:4 (1996), 2629–2635 | DOI | MR
[16] M. A. Nielsen, The entanglement fidelity and quantum error correction, arXiv: quant-ph/9606012
[17] H. Barnum, M. A. Nielsen, B. W. Schumacher, “Information transmission through a noisy quantum channel”, Phys. Rev. A, 57:6 (1998), 4153–4175 | DOI
[18] M. A. Nielsen, C. M. Caves, B. Schumacher, H. Barnum, “Information-theoretic approach to quantum error correction and reversible measurement”, Proc. R. Soc. London Ser. A, 454:1969 (1998), 277–304 | DOI | MR
[19] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation”, Phys. Rev. A, 60:3 (1999), 1888–1898 | DOI | MR
[20] M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation”, Phys. Lett. A, 303:4 (2002), 249–252 | DOI | MR
[21] S. Luo, “Information conservation and entropy change in quantum measurements”, Phys. Rev. A, 82:5 (2010), 052103, 5 pp. | DOI | MR
[22] S. Luo, N. Li, “Decoherence and measurement-induced correlations”, Phys. Rev. A, 84:5 (2011), 052309, 8 pp. | DOI
[23] H.-P. Breuer, E.-M. Laine, J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems”, Phys. Rev. Lett., 103:21 (2009), 210401, 4 pp. | DOI | MR
[24] Á. Rivas, S. F. Huelga, M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions”, Phys. Rev. Lett., 105:5 (2010), 050403, 4 pp. | DOI | MR
[25] S. Luo, S. Fu, H. Song, “Quantifying non-Markovianity via correlations”, Phys. Rev. A, 86:4 (2012), 044101, 4 pp. | DOI
[26] D. Chruściński, S. Maniscalco, “Degree of non-Markovianity of quantum evolution”, Phys. Rev. Lett., 112:12 (2014), 120404, 5 pp. | DOI
[27] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, “Non-Markovian dynamics in open quantum systems”, Rev. Mod. Phys., 88:2 (2016), 021002, 24 pp. | DOI
[28] H. Spohn, “Entropy production for quantum dynamical semigroups”, J. Math. Phys., 19:5 (1978), 1227–1230 | DOI | MR
[29] G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences”, Phys. Rev. E, 60:3 (1999), 2721–2726 | DOI
[30] L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR
[31] J. M. R. Parrondo, C. Van den Broeck, R. Kawai, “Entropy production and the arrow of time”, New J. Phys., 11:7 (2009), 073008, 14 pp. | DOI
[32] S. Deffner, E. Lutz, “Nonequilibrium entropy production for open quantum systems”, Phys. Rev. Lett., 107:14 (2011), 140404, 5 pp. | DOI
[33] T. Sagawa, M. Ueda, “Role of mutual information in entropy production under information exchanges”, New J. Phys., 15:12 (2013), 125012, 23 pp. | DOI | MR
[34] M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics”, Phys. Rev. X, 5:2 (2015), 021001, 11 pp., arXiv: 1410.4572 | DOI
[35] H. Hossein-Nejad, E. J. O'Reilly, A. Olaya-Castro, “Work, heat and entropy production in bipartite quantum systems”, New J. Phys., 17:7 (2015), 075014, 11 pp. | DOI
[36] M. Popovic, B. Vacchini, S. Campbell, “Entropy production and correlations in a controlled non-Markovian setting”, Phys. Rev. A, 98:1 (2018), 012130, 8 pp. | DOI
[37] J. P. Santos, L. C. Céleri, F. Brito, G. T. Landi, M. Paternostro, “Spin-phase-space-entropy production”, Phys. Rev. A, 97:5 (2018), 052123, 10 pp. | DOI
[38] K. Ptaszyǹski, M. Esposito, “Entropy production in open systems: The predominant role of intraenvironment correlations”, Phys. Rev. Lett., 123:20 (2019), 200603, 6 pp. | DOI
[39] P. Strasberg, A. Winter, “First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy”, PRX Quantum, 2:3 (2021), 030202, 26 pp. | DOI
[40] G. T. Landi, M. Paternostro, “Irreversible entropy production: From classical to quantum”, Rev. Mod. Phys., 93:3 (2021), 035008, 58 pp. | DOI | MR
[41] A. Belenchia, M. Paternostro, G. T. Landi, “Informational steady states and conditional entropy production in continuously monitored systems: The case of Gaussian systems”, Phys. Rev. A, 105:2 (2022), 022213, 14 pp. | DOI | MR
[42] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefinitness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278 | DOI | MR
[43] M.-D. Choi, “Completely positive maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290 | DOI | MR
[44] M. Jiang, S. Luo, S. Fu, “Channel-state duality”, Phys. Rev. A, 87:2 (2013), 022310, 8 pp. | DOI
[45] K. Życzkowski, I. Bengtsson, “On duality between quantum maps and quantum states”, Open Syst. Inf. Dyn., 11:1 (2004), 3-42 | DOI | MR
[46] Y. Sun, N. Li, S. Luo, “Fidelity-disturbance-entropy tradeoff in quantum channels”, Phys. Rev. A, 105:6 (2022), 062458, 9 pp. | DOI
[47] K. Banaszek, “Fidelity balance in quantum operations”, Phys. Rev. Lett., 86:7 (2001), 1366–1369 | DOI
[48] S. Luo, S. Fu, N. Li, “Decorrelating capabilities of operations with application to decoherence”, Phys. Rev. A, 82:5 (2010), 052122, 12 pp. | DOI
[49] G. Lüders, “Über die Zustandsänderung durch den Meßprozeß”, Ann. Physik, 443:5-8 (1950), 322–328 | DOI | MR
[50] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys, 45:6 (2004), 2171–2180 | DOI | MR | Zbl
[51] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357 | DOI | MR
[52] F. Buscemi, G. Chiribella, G. M. D'Ariano, “Inverting quantum decoherence by classical feedback from the environment”, Phys. Rev. Lett., 95:9 (2005), 090501, 4 pp. | DOI
[53] K. Brádler, P. Hayden, D. Touchette, M. M. Wilde, “Trade-off capacities of the quantum Hadamard channels”, Phys. Rev. A, 81:6 (2010), 062312, 23 pp. | DOI
[54] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70:13 (1993), 1895–1899 | DOI | MR | Zbl
[55] S. Popescu, “Bell's inequalities versus teleportation: What is nonlocality?”, Phys. Rev. Lett., 72:6 (1994), 797–799 | DOI | MR
[56] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A, 59:6 (1999), 4206–4216 | DOI | MR
[57] K. Banaszek, “Optimal quantum teleportation with an arbitrary pure state”, Phys. Rev. A, 62:2 (2000), 024301, 4 pp. | DOI
[58] G. Bowen, S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity”, Phys. Rev. Lett., 87:26 (2001), 267901, 4 pp. | DOI
[59] M. S. Pinsker, Informatsiya i informatsionnaya ustoichivost sluchainykh velichin i protsessov, Izd-vo AN SSSR, M., 1960 | MR | Zbl
[60] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR