Generalising holographic fishchain
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 475-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We attempt to generalize the integrable Gromov–Sever models, the so-called fishchain models, which are dual to biscalar fishnets. We show that they can be derived in any dimension, at least for some integer deformation parameter of the fishnet lattice. In particular, we focus on the study of fishchain models in AdS$_7$ that are dual to the six-dimensional fishnet models.
Keywords: fishnet models, holography, integrability.
@article{TMF_2024_218_3_a3,
     author = {R. M. Iakhibbaev and D. M. Tolkachev},
     title = {Generalising holographic fishchain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--491},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a3/}
}
TY  - JOUR
AU  - R. M. Iakhibbaev
AU  - D. M. Tolkachev
TI  - Generalising holographic fishchain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 475
EP  - 491
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a3/
LA  - ru
ID  - TMF_2024_218_3_a3
ER  - 
%0 Journal Article
%A R. M. Iakhibbaev
%A D. M. Tolkachev
%T Generalising holographic fishchain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 475-491
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a3/
%G ru
%F TMF_2024_218_3_a3
R. M. Iakhibbaev; D. M. Tolkachev. Generalising holographic fishchain. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 475-491. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a3/

[1] N. Gromov, A. Sever, “Derivation of the holographic dual of a planar conformal field theory in 4D”, Phys. Rev. Lett., 123:8 (2019), 081602, 6 pp. | DOI | MR

[2] N. Gromov, A. Sever, “Quantum fishchain in AdS$_5$”, JHEP, 10 (2019), 085, 38 pp., arXiv: 1907.01001 | DOI | MR | Zbl

[3] N. Gromov, A. Sever, “The holographic dual of strongly $\gamma$-deformed $\mathcal N=4$ SYM theory: derivation, generalization, integrability and discrete reparametrization symmetry”, JHEP, 02 (2020), 035, 31 pp., arXiv: 1908.10379 | DOI | MR | Zbl

[4] J. Caetano, Ö. Gürdoğan, V. Kazakov, “Chiral limit of $\mathcal N=4$ SYM and ABJM and integrable Feynman graphs”, JHEP, 03 (2018), 077, 42 pp. | DOI | MR | Zbl

[5] N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, G. Sizov, “Integrability of conformal fishnet theory”, JHEP, 01 (2018), 095, 78 pp., arXiv: 1706.04167 | DOI | MR | Zbl

[6] D. Grabner, N. Gromov, V. Kazakov, G. Korchemsky, “Strongly $\gamma$-deformed $\mathcal{N}=4$ supersymmetric Yang–Mills theory as an integrable conformal field theory”, Phys. Rev. Lett., 120:11 (2018), 111601, 6 pp. | DOI | MR

[7] A. B. Zamolodchikov, “ ‘Fishing-net’ diagrams as completely integrable system”, Phys. Lett. B, 97:1 (1980), 63–66 | DOI | MR

[8] N. Gromov, V. Kazakov, G. Korchemsky, “Exact correlation functions in conformal fishnet theory”, JHEP, 08 (2019), 123, 66 pp., arXiv: 1808.02688 | DOI | MR | Zbl

[9] S. Derkachov, E. Olivucci, “Exactly solvable magnet of conformal spins in four dimensions”, Phys. Rev. Lett., 125:3 (2020), 031603, 7 pp. | DOI | MR

[10] B. Basso, D.-L. Zhong, “Continuum limit of fishnet graphs and AdS sigma model”, JHEP, 01 (2019), 002, 46 pp., arXiv: 1806.04105 | DOI | MR | Zbl

[11] V. Kazakov, E. Olivucci, “Biscalar integrable conformal field theories in any dimension”, Phys. Rev. Lett., 121:13 (2018), 131601, 6 pp., arXiv: 1801.09844 | DOI | MR

[12] L. V. Bork, R. M. Iakhibbaev, N. B. Muzhichkov, E. S. Sozinov, “Amplitudes in fishnet theories in diverse dimensions and box ladder diagrams”, JHEP, 02 (2021), 185, 41 pp., arXiv: 2011.03295 | DOI | MR | Zbl

[13] L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, D. E. Vlasenko, “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions”, JHEP, 11 (2015), 059, 39 pp., arXiv: 1508.05570 | DOI | MR | Zbl

[14] V. Kazakov, E. Olivucci, “The loom for general fishnet CFTs”, JHEP, 06 (2023), 041, 40 pp., arXiv: 2212.09732 | DOI | MR | Zbl

[15] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, I. T. Todorov, Harmonic Analysis: On the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lecture Notes in Physics, 63, Springer, Berlin, 1977 | DOI

[16] F. A. Dolan, H. Osborn, “Conformal partial waves and the operator product expansion”, Nucl. Phys. B, 678:1–2 (2004), 491–507, arXiv: hep-th/0309180 | DOI | MR

[17] N. Gromov, J. Julius, N. Primi, “Open fishchain in $N=4$ supersymmetric Yang–Mills theory”, JHEP, 07 (2021), 127, 49 pp., arXiv: 2101.01232 | DOI | MR | Zbl

[18] B. Hoare, “Integrable deformations of sigma models”, J. Phys. A: Math. Theor., 55:9 (2022), 093001, 78 pp., arXiv: 2109.14284 | DOI | MR

[19] D. Simmons-Duffin, “Projectors, shadows, and conformal blocks”, JHEP, 04 (2014), 146, 35 pp., arXiv: 1204.3894 | DOI | MR | Zbl

[20] M. Alfimov, N. Gromov, V. Kazakov, “Chapter 13: $\mathcal N=4$ SYM quantum spectral curve in BFKL regime”, From the Past to the Future: The Legacy of Lev Lipatov, eds. J. Bartels, V. Fadin, E. Levin, A. Levy, V. Kim, A. Sabio-Vera, World Sci., Singapore, 2021, 335–367 | DOI

[21] Z. Bajnok, J. Balog, B. Basso, G. P. Korchemsky, L. Palla, “Scaling function in AdS/CFT from the O(6) sigma model”, Nucl. Phys. B, 811:3 (2009), 438–462, arXiv: 0809.4952 | DOI | MR

[22] V. Kazakov, E. Olivucci, M. Preti, “Generalized fishnets and exact four-point correlators in chiral CFT$_4$”, JHEP, 06 (2019), 078, 71 pp., arXiv: 1901.00011 | DOI | MR | Zbl

[23] A. Pittelli, M. Preti, “Integrable fishnet from $\gamma$-deformed $\mathcal N=2$ quivers”, Phys. Lett. B, 798 (2019), 134971, 5 pp., arXiv: 1906.03680 | DOI | MR | Zbl

[24] J. Polchinski, V. Rosenhaus, “The spectrum in the Sachdev–Ye–Kitaev model”, JHEP, 04 (2016), 001, 25 pp., arXiv: 1601.06768 | DOI | MR | Zbl

[25] D. Chicherin, S. Derkachov, A. P. Isaev, “Conformal algebra: R-matrix and star-triangle relation”, JHEP, 04 (2013), 020, 49 pp., arXiv: 1206.4150 | DOI | MR | Zbl