@article{TMF_2024_218_3_a2,
author = {Xinyue Li and Qian Bai and Qiulan Zhao},
title = {Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing {Hirota} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {449--474},
year = {2024},
volume = {218},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/}
}
TY - JOUR AU - Xinyue Li AU - Qian Bai AU - Qiulan Zhao TI - Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 449 EP - 474 VL - 218 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/ LA - ru ID - TMF_2024_218_3_a2 ER -
%0 Journal Article %A Xinyue Li %A Qian Bai %A Qiulan Zhao %T Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 449-474 %V 218 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/ %G ru %F TMF_2024_218_3_a2
Xinyue Li; Qian Bai; Qiulan Zhao. Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 449-474. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/
[1] P. K. Shukla, B. Eliasson, “Nelineinye aspekty kvantovoi fiziki plazmy”, UFN, 180:1 (2010), 55–82 | DOI | DOI
[2] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, “Theory of Bose–Einstein condensation in trapped gases”, Rev. Mod. Phys., 71:3 (1999), 463–512 | DOI
[3] F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Advanced Series in Mathematical Physics, 14, World Sci., Singapore, 1992 | DOI | MR
[4] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[5] W. Xun, L. Ju, E. Fan, “Painlevé-type asymptotics for the defocusing Hirota equation in transition region”, Proc. Roy. Soc. A, 478:2268 (2022), 20220401, 14 pp. | DOI | MR
[6] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[7] F. Demontis, G. Ortenzi, C. van der Mee, “Exact solutions of the Hirota equation and vortex filaments motion”, Phys. D., 313 (2015), 61–80 | DOI | MR
[8] J. Cen, A. Fring, “Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation”, Phys. D., 397 (2019), 17–24 | DOI | MR
[9] J. Chen, R. Tong, “The complex Hamiltonian systems and quasi-periodic solutions in the Hirota equation”, J. Nonlinear Math. Phys., 28:1 (2021), 134–149 | DOI | MR
[10] Z.-Y. Zhang, “Jacobi elliptic function expansion method for the modified Korteweg–de Vries–Zakharov–Kuznetsov and the Hirota equations”, Rom. J. Phys., 60:9–10 (2015), 1384–1394
[11] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, “Characteristics of rogue waves on a periodic background for the Hirota equation”, Wave Motion, 93 (2020), 102454, 10 pp. | DOI | MR
[12] X. Gao, H.-Q. Zhang, “Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background”, Nonlinear Dyn., 101:2 (2020), 1159–1168 | DOI | Zbl
[13] A. M. Kamchatnov, “On improving the effectiveness of periodic solutions of the NLS and DNLS equations”, J. Phys. A: Math. Gen., 23:13 (1990), 2945–2960 | DOI | MR | Zbl
[14] A. M. Kamchatnov, “New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability”, Phys. Rep., 286:4 (1997), 199–270 | DOI | MR
[15] H. Flashka, M. G. Forest, D. W. McLaughlin, “Multiphase averaging and the inverse spectral soluions of the Korteweg–de Vries equation”, Commun. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR
[16] A. M. Kamchatnov, “Whitham equations in the AKNS scheme”, Phys. Lett. A, 186:5–6 (1994), 387–390 | DOI | MR | Zbl
[17] G. B. Whitham, “Non-linear dispersive waves”, Proc. Roy. Soc. London Ser. A, 283:1393 (1965), 283–291 | DOI | MR
[18] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl
[19] G. A. El, M. A. Hoefer, “Dispersive shock waves and modulation theory”, Phys. D, 333 (2016), 11–65 | DOI | MR
[20] D.-S. Wang, L. Xu, Z. Xuan, “The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation”, J. Nonlinear Sci., 32:1 (2022), 3, 46 pp. | DOI | MR
[21] A. V. Gurevich, L. P. Pitaevskii, “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1974), 590–604
[22] Y. Kodama, V. U. Pierce, F.-R. Tian, “On the Whitham equations for the defocusing complex modified KdV equation”, SIAM J. Math. Anal., 40:5 (2008), 1750–1782 | DOI | MR
[23] G. Biondini, Y. Kodama, “On the Whitham equations for the defocusing nonlinear Schrödinger equation with step initial data”, J. Nonlinear Sci., 16:5 (2006), 435–481 | DOI | MR
[24] Y. Zhang, H.-Q. Hao, R. Guo, “Periodic solutions and Whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation”, Phys. Lett. A, 450 (2022), 128369, 19 pp. | DOI | MR
[25] G. A. El, V. V. Geogjaev, A. V. Gurevich, A. L. Krylov, “Decay of an initial discontinuity in the defocusing NLS hydrodynamics”, Phys. D, 87:1–4 (1995), 186–192 | DOI | MR | Zbl
[26] Y. Kodama, “The Whitham equations for optical communications: mathematical theory of NRZ”, SIAM J. Appl. Math., 59:6 (1999), 2162–2192 | DOI | MR | Zbl
[27] L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, K. H. Spatschek, “Gray optical dips in the subpicosecond regime”, Phys. Rev. E, 66:4 (2002), 046616, 8 pp. | DOI
[28] A. Mahalingam, K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers”, Phys. Rev. E, 64:4 (2001), 046608, 9 pp. | DOI