Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 449-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explore the Whitham modulation theory and one of its physical applications, the dam-breaking problem for the defocusing Hirota equation that describes the propagation of ultrashort pulses in optical fibers with third-order dispersion and self-steepening higher-order effects. By using the finite-gap integration approach, we deduce periodic solutions of the equation and discuss the degeneration of genus-one periodic solution to a soliton solution. Furthermore, the corresponding Whitham equations based on Riemann invariants are obtained, which can be used to modulate the periodic solutions with step-like initial data. These Whitham equations with the weak dispersion limit are quasilinear hyperbolic equations and elucidate the averaged dynamics of the fast oscillations referred to as dispersive shocks, which occur in the solution of the defocusing Hirota equation. We analyze the case where both characteristic velocities in genus-zero Whitham equations are equal to zero and the values of two Riemann invariants are taken as the critical case. Then by varying these two values as step-like initial data, we study the rarefaction wave and dispersive shock wave solutions of the Whitham equations. Under certain step-like initial data, the point where two genus-one dispersive shock waves begin to collide at a certain time, that is, the point where the genus-two dispersive shock wave appears, is investigated. We also discuss the dam-breaking problem as an important physical application of the Whitham modulation theory.
Keywords: Defocusing Hirota equation, Whitham equations, rarefaction wave, dispersive shock wave, dam-breaking problem.
@article{TMF_2024_218_3_a2,
     author = {Xinyue Li and Qian Bai and Qiulan Zhao},
     title = {Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing {Hirota} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {449--474},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/}
}
TY  - JOUR
AU  - Xinyue Li
AU  - Qian Bai
AU  - Qiulan Zhao
TI  - Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 449
EP  - 474
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/
LA  - ru
ID  - TMF_2024_218_3_a2
ER  - 
%0 Journal Article
%A Xinyue Li
%A Qian Bai
%A Qiulan Zhao
%T Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 449-474
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/
%G ru
%F TMF_2024_218_3_a2
Xinyue Li; Qian Bai; Qiulan Zhao. Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 449-474. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a2/

[1] P. K. Shukla, B. Eliasson, “Nelineinye aspekty kvantovoi fiziki plazmy”, UFN, 180:1 (2010), 55–82 | DOI | DOI

[2] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, “Theory of Bose–Einstein condensation in trapped gases”, Rev. Mod. Phys., 71:3 (1999), 463–512 | DOI

[3] F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Advanced Series in Mathematical Physics, 14, World Sci., Singapore, 1992 | DOI | MR

[4] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR

[5] W. Xun, L. Ju, E. Fan, “Painlevé-type asymptotics for the defocusing Hirota equation in transition region”, Proc. Roy. Soc. A, 478:2268 (2022), 20220401, 14 pp. | DOI | MR

[6] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[7] F. Demontis, G. Ortenzi, C. van der Mee, “Exact solutions of the Hirota equation and vortex filaments motion”, Phys. D., 313 (2015), 61–80 | DOI | MR

[8] J. Cen, A. Fring, “Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation”, Phys. D., 397 (2019), 17–24 | DOI | MR

[9] J. Chen, R. Tong, “The complex Hamiltonian systems and quasi-periodic solutions in the Hirota equation”, J. Nonlinear Math. Phys., 28:1 (2021), 134–149 | DOI | MR

[10] Z.-Y. Zhang, “Jacobi elliptic function expansion method for the modified Korteweg–de Vries–Zakharov–Kuznetsov and the Hirota equations”, Rom. J. Phys., 60:9–10 (2015), 1384–1394

[11] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, “Characteristics of rogue waves on a periodic background for the Hirota equation”, Wave Motion, 93 (2020), 102454, 10 pp. | DOI | MR

[12] X. Gao, H.-Q. Zhang, “Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background”, Nonlinear Dyn., 101:2 (2020), 1159–1168 | DOI | Zbl

[13] A. M. Kamchatnov, “On improving the effectiveness of periodic solutions of the NLS and DNLS equations”, J. Phys. A: Math. Gen., 23:13 (1990), 2945–2960 | DOI | MR | Zbl

[14] A. M. Kamchatnov, “New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability”, Phys. Rep., 286:4 (1997), 199–270 | DOI | MR

[15] H. Flashka, M. G. Forest, D. W. McLaughlin, “Multiphase averaging and the inverse spectral soluions of the Korteweg–de Vries equation”, Commun. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR

[16] A. M. Kamchatnov, “Whitham equations in the AKNS scheme”, Phys. Lett. A, 186:5–6 (1994), 387–390 | DOI | MR | Zbl

[17] G. B. Whitham, “Non-linear dispersive waves”, Proc. Roy. Soc. London Ser. A, 283:1393 (1965), 283–291 | DOI | MR

[18] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl

[19] G. A. El, M. A. Hoefer, “Dispersive shock waves and modulation theory”, Phys. D, 333 (2016), 11–65 | DOI | MR

[20] D.-S. Wang, L. Xu, Z. Xuan, “The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation”, J. Nonlinear Sci., 32:1 (2022), 3, 46 pp. | DOI | MR

[21] A. V. Gurevich, L. P. Pitaevskii, “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1974), 590–604

[22] Y. Kodama, V. U. Pierce, F.-R. Tian, “On the Whitham equations for the defocusing complex modified KdV equation”, SIAM J. Math. Anal., 40:5 (2008), 1750–1782 | DOI | MR

[23] G. Biondini, Y. Kodama, “On the Whitham equations for the defocusing nonlinear Schrödinger equation with step initial data”, J. Nonlinear Sci., 16:5 (2006), 435–481 | DOI | MR

[24] Y. Zhang, H.-Q. Hao, R. Guo, “Periodic solutions and Whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation”, Phys. Lett. A, 450 (2022), 128369, 19 pp. | DOI | MR

[25] G. A. El, V. V. Geogjaev, A. V. Gurevich, A. L. Krylov, “Decay of an initial discontinuity in the defocusing NLS hydrodynamics”, Phys. D, 87:1–4 (1995), 186–192 | DOI | MR | Zbl

[26] Y. Kodama, “The Whitham equations for optical communications: mathematical theory of NRZ”, SIAM J. Appl. Math., 59:6 (1999), 2162–2192 | DOI | MR | Zbl

[27] L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, K. H. Spatschek, “Gray optical dips in the subpicosecond regime”, Phys. Rev. E, 66:4 (2002), 046616, 8 pp. | DOI

[28] A. Mahalingam, K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers”, Phys. Rev. E, 64:4 (2001), 046608, 9 pp. | DOI