A nonlocal finite-dimensional integrable system related to the
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 430-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems.
Keywords: nonlocal integrable system, Lie–Poisson Hamiltonian system
Mots-clés : nonlocal mKdV equation, action–angle type variables.
@article{TMF_2024_218_3_a1,
     author = {Xue Wang and Dianlou Du and H. Wang},
     title = {A~nonlocal finite-dimensional integrable system related to the},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--448},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/}
}
TY  - JOUR
AU  - Xue Wang
AU  - Dianlou Du
AU  - H. Wang
TI  - A nonlocal finite-dimensional integrable system related to the
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 430
EP  - 448
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/
LA  - ru
ID  - TMF_2024_218_3_a1
ER  - 
%0 Journal Article
%A Xue Wang
%A Dianlou Du
%A H. Wang
%T A nonlocal finite-dimensional integrable system related to the
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 430-448
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/
%G ru
%F TMF_2024_218_3_a1
Xue Wang; Dianlou Du; H. Wang. A nonlocal finite-dimensional integrable system related to the. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 430-448. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/

[1] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[2] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[3] A. S. Fokas, “Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:2 (2016), 319–324 | DOI | MR

[4] J. G. Rao, Y. S. Zhang, A. S. Fokas, J. S. He, “Rogue waves of the nonlocal Davey–Stewartson I equation”, Nonlinearity, 31:9 (2018), 4090–4107 | DOI | MR

[5] Z. Y. Yan, “Integrable $\mathscr{P\!T}$-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model”, Appl. Math. Lett., 47 (2015), 61–68 | DOI | MR

[6] Z. Y. Yan, “Nonlocal general vector nonlinear Schrödinger equations: Integrability, $\mathscr{P\!T}$ symmetribility, and solutions”, Appl. Math. Lett., 62 (2016), 101–109 | DOI | MR

[7] S. Y. Lou, F. Huang, “Alice–Bob physics: Coherent solutions of nonlocal KdV systems”, Sci. Rep., 7 (2017), 869, 11 pp. | DOI

[8] C. Q. Song, D. M. Xiao, Z.-N. Zhu, “Reverse space-time nonlocal Sasa–Satsuma equation and its solutions”, J. Phys. Soc. Japan, 86:5 (2017), 054001, 6 pp. | DOI

[9] J. Li, T. C. Xia, “$N$-soliton solutions for the nonlocal Fokas–Lenells equation via RHP”, Appl. Math. Lett., 113 (2021), 106850, 6 pp. | DOI | MR

[10] Z.-X. Zhou, “Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation”, Stud. Appl. Math., 141:2 (2018), 186–204 | DOI | MR

[11] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR

[12] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR

[13] T. A. Gadzhimuradov, A. M. Agalarov, “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation”, Phys. Rev. A, 93:6 (2016), 062124, 6 pp. | DOI

[14] Y. Hanif, U. Saleem, “Degenerate and non-degenerate solutions of $\mathscr{P\!T}$-symmetric nonlocal integrable discrete nonlinear Schrödinger equation”, Phys. Lett. A, 384:32 (2020), 126834, 11 pp. | DOI | MR

[15] V. V. Konotop, J. Yang, D. A. Zezyulin, “Nonlinear waves in PT-symmetric systems”, Rev. Mod. Phys., 88:3 (2016), 035002, 59 pp. | DOI

[16] N. Kulagin, L. Lerman, A. Malkin, “Solitons and cavitons in a nonlocal Whitham equation”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105525, 19 pp. | DOI | MR

[17] M. Gürses, A. Pekcan, “Nonlocal nonlinear Schrödinger equations and their soliton solutions”, J. Math. Phys., 59:5 (2018), 051501, 17 pp. | DOI | MR

[18] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2016), 7–59 | DOI | MR

[19] J.-L. Ji, Z.-N. Zhu, “Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform”, J. Math. Anal. Appl., 453:2 (2017), 973–984 | DOI | MR

[20] J.-L. Ji, Z.-N. Zhu, “On a nonlocal modified Korteweg–de Vries equation: Integrability, Darboux transformation and soliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 699–708 | DOI | MR

[21] M. Gürses, A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota method”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 427–448 | DOI | MR

[22] M. Gürses, A. Pekcan, “Soliton solutions of the shifted nonlocal NLS and MKdV equations”, Phys. Lett., 422 (2022), 127793, 10 pp. | DOI | MR

[23] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrabl nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[24] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations”, J. Geom. Phys., 157 (2020), 103845, 8 pp. | DOI | MR

[25] W.-X. Ma, “Riemann–Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations”, J. Math. Anal. Appl., 498:2 (2021), 124980, 13 pp. | DOI | MR

[26] X. Zhou, E. G. Fan, “Long time asymptotics for the nonlocal mKdV equation with finite density initial data”, Phys. D, 440 (2022), 133458, 22 pp. | DOI | MR

[27] G. Q. Zhang, Z. Y. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions”, Phys. D, 402 (2020), 132170, 14 pp. | DOI | MR

[28] X.-D. Luo, “Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg–de Vries equation with nonzero boundary conditions and constant phase shift”, Chaos, 29:7 (2019), 073118, 13 pp. | DOI | MR

[29] D. L. Du, X. Geng, “Action-angle variables for the Lie–Poisson Hamiltonian systems associated with Boussinesq equation”, Commun. Nonlinear Sci. Numer. Simul., 30:1–3 (2016), 168–181 | DOI | MR

[30] D. L. Du, X. Geng, “Symplectic realizations and action-angle coordinates for the Lie–Poisson system of Dirac hierarchy”, Appl. Math. Comput., 244 (2014), 222–234 | DOI | MR

[31] D. L. Du, X. Yang, “An alternative approach to solve the mixed AKNS equations”, J. Math. Anal. Appl., 414:2 (2014), 850–870 | DOI | MR