A~nonlocal finite-dimensional integrable system related to the
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 430-448
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlocal integrable system, Lie–Poisson Hamiltonian system
Mots-clés : nonlocal mKdV equation, action–angle type variables.
                    
                  
                
                
                Mots-clés : nonlocal mKdV equation, action–angle type variables.
@article{TMF_2024_218_3_a1,
     author = {Xue Wang and Dianlou Du and H. Wang},
     title = {A~nonlocal finite-dimensional integrable system related to the},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--448},
     publisher = {mathdoc},
     volume = {218},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/}
}
                      
                      
                    TY - JOUR AU - Xue Wang AU - Dianlou Du AU - H. Wang TI - A~nonlocal finite-dimensional integrable system related to the JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 430 EP - 448 VL - 218 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/ LA - ru ID - TMF_2024_218_3_a1 ER -
Xue Wang; Dianlou Du; H. Wang. A~nonlocal finite-dimensional integrable system related to the. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 430-448. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a1/
