Keywords: Riemann–Liouville derivative, Caputo derivative, fractional ideal gas.
@article{TMF_2024_218_2_a9,
author = {Z. Korichi and A. Souigat and R. Bekhouche and M. Meftah},
title = {Solution of the~fractional {Liouville} equation by using},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {389--399},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/}
}
TY - JOUR AU - Z. Korichi AU - A. Souigat AU - R. Bekhouche AU - M. Meftah TI - Solution of the fractional Liouville equation by using JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 389 EP - 399 VL - 218 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/ LA - ru ID - TMF_2024_218_2_a9 ER -
Z. Korichi; A. Souigat; R. Bekhouche; M. Meftah. Solution of the fractional Liouville equation by using. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 389-399. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/
[1] K. S. Miller, B. Ross, An Introcduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993 | MR
[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR
[3] G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport”, Phys. Rep., 371:6 (2002), 461–580 | DOI | MR
[4] G. M. Zaslavskii, Gamiltonov khaos i fraktalnaya dinamika, RKhD, IKI, M.–Izhevsk, 2010
[5] A. Carpinteri, F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics, CISM International Centre for Mechanical Sciences, 378, Springer, Vienna, 1997 | DOI | MR
[6] N. Laskin, Principles of fractional quantum mechanics, arXiv: 1009.5533
[7] V. E. Tarasov, “Electromagnetic field of fractal distribution of charged particles”, Phys. Plasmas, 12:8 (2005), 082106, 9 pp. | DOI
[8] H.-G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.-Q. Chen, “A new collection of real world applications of fractional calculus in science and engineering”, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231 | DOI
[9] V. E. Tarasov, G. M. Zaslavsky, “Fractional dynamics of coupled oscillators with long-range interaction”, Chaos, 16:2 (2006), 023110, 13 pp., arXiv: nlin/0512013 | DOI | MR | Zbl
[10] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Sci., Singapore, 2000 | MR | Zbl
[11] V. E. Tarasov, G. M. Zaslavsky, “Fokker–Planck equation with fractional coordinate derivatives”, Phys. A, 387:26 (2008), 6505–6512 | DOI | MR
[12] N. Laskin, “Fractional quantum mechanics and Lévy path integrals”, Phys. Lett. A, 268:4–6 (2000), 298–305 | DOI | MR | Zbl
[13] Z. Korichi, M. T. Meftakh, “Izuchenie kvantovykh statisticheskikh sistem v $D$-mernom prostranstve s ispolzovaniem drobnoi proizvodnoi”, TMF, 186:3 (2016), 433–442 | DOI | DOI | MR
[14] Z. Korichi, M. T. Meftah, “Statistical mechanics based on fractional classical and quantum mechanics”, J. Math. Phys., 55:3 (2014), 033302, 9 pp. | DOI | MR
[15] N. Laskin, “Fractional quantum mechanics”, Phys. Rev. E, 62:3 (2000), 3135–3145, arXiv: 0811.1769 | DOI
[16] Z. Z. Alisultanov, R. P. Meilanov, “Nekotorye osobennosti kvantovo-statisticheskikh sistem s energeticheskim spektrom drobno-stepennogo tipa”, TMF, 171:3 (2012), 404–416 | DOI | DOI | MR | Zbl
[17] V. Tarasov, “Liouville and Bogoliubov equations with fractional derivatives”, Modern Phys. Lett. B., 21:5 (2007), 237–248 | DOI | MR
[18] J. Liouville, “Note sur la théorie de la variation des constantes arbitraires”, J. Math. Pures Appl., 3 (1838), 342–349
[19] C. Ngô, H. Ngô, Physique Statistique. Introduction, Dunod, Paris, 2001
[20] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999 | MR | Zbl