Solution of the fractional Liouville equation by using
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 389-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives for systems exhibiting noninteger power laws in their Hamiltonians. Based on the fractional Liouville equation, we calculate the density function (DF) of a classical ideal gas. If the Riemann–Liouville derivative is used, the DF is a function depending on both the momentum $p$ and the coordinate $q$, but if the derivative in the Caputo sense is used, the DF is a constant independent of $p$ and $q$. We also study a gas consisting of $N$ fractional oscillators in one-dimensional space and obtain that the DF of the system depends on the type of the derivative.
Mots-clés : fractional Liouville equation
Keywords: Riemann–Liouville derivative, Caputo derivative, fractional ideal gas.
@article{TMF_2024_218_2_a9,
     author = {Z. Korichi and A. Souigat and R. Bekhouche and M. Meftah},
     title = {Solution of the~fractional {Liouville} equation by using},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--399},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/}
}
TY  - JOUR
AU  - Z. Korichi
AU  - A. Souigat
AU  - R. Bekhouche
AU  - M. Meftah
TI  - Solution of the fractional Liouville equation by using
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 389
EP  - 399
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/
LA  - ru
ID  - TMF_2024_218_2_a9
ER  - 
%0 Journal Article
%A Z. Korichi
%A A. Souigat
%A R. Bekhouche
%A M. Meftah
%T Solution of the fractional Liouville equation by using
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 389-399
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/
%G ru
%F TMF_2024_218_2_a9
Z. Korichi; A. Souigat; R. Bekhouche; M. Meftah. Solution of the fractional Liouville equation by using. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 389-399. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a9/

[1] K. S. Miller, B. Ross, An Introcduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993 | MR

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR

[3] G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport”, Phys. Rep., 371:6 (2002), 461–580 | DOI | MR

[4] G. M. Zaslavskii, Gamiltonov khaos i fraktalnaya dinamika, RKhD, IKI, M.–Izhevsk, 2010

[5] A. Carpinteri, F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics, CISM International Centre for Mechanical Sciences, 378, Springer, Vienna, 1997 | DOI | MR

[6] N. Laskin, Principles of fractional quantum mechanics, arXiv: 1009.5533

[7] V. E. Tarasov, “Electromagnetic field of fractal distribution of charged particles”, Phys. Plasmas, 12:8 (2005), 082106, 9 pp. | DOI

[8] H.-G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.-Q. Chen, “A new collection of real world applications of fractional calculus in science and engineering”, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231 | DOI

[9] V. E. Tarasov, G. M. Zaslavsky, “Fractional dynamics of coupled oscillators with long-range interaction”, Chaos, 16:2 (2006), 023110, 13 pp., arXiv: nlin/0512013 | DOI | MR | Zbl

[10] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Sci., Singapore, 2000 | MR | Zbl

[11] V. E. Tarasov, G. M. Zaslavsky, “Fokker–Planck equation with fractional coordinate derivatives”, Phys. A, 387:26 (2008), 6505–6512 | DOI | MR

[12] N. Laskin, “Fractional quantum mechanics and Lévy path integrals”, Phys. Lett. A, 268:4–6 (2000), 298–305 | DOI | MR | Zbl

[13] Z. Korichi, M. T. Meftakh, “Izuchenie kvantovykh statisticheskikh sistem v $D$-mernom prostranstve s ispolzovaniem drobnoi proizvodnoi”, TMF, 186:3 (2016), 433–442 | DOI | DOI | MR

[14] Z. Korichi, M. T. Meftah, “Statistical mechanics based on fractional classical and quantum mechanics”, J. Math. Phys., 55:3 (2014), 033302, 9 pp. | DOI | MR

[15] N. Laskin, “Fractional quantum mechanics”, Phys. Rev. E, 62:3 (2000), 3135–3145, arXiv: 0811.1769 | DOI

[16] Z. Z. Alisultanov, R. P. Meilanov, “Nekotorye osobennosti kvantovo-statisticheskikh sistem s energeticheskim spektrom drobno-stepennogo tipa”, TMF, 171:3 (2012), 404–416 | DOI | DOI | MR | Zbl

[17] V. Tarasov, “Liouville and Bogoliubov equations with fractional derivatives”, Modern Phys. Lett. B., 21:5 (2007), 237–248 | DOI | MR

[18] J. Liouville, “Note sur la théorie de la variation des constantes arbitraires”, J. Math. Pures Appl., 3 (1838), 342–349

[19] C. Ngô, H. Ngô, Physique Statistique. Introduction, Dunod, Paris, 2001

[20] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999 | MR | Zbl