Mots-clés : exceptional Lie algebras
@article{TMF_2024_218_2_a8,
author = {K. V. Stepanyantz},
title = {Gauge coupling unification in the~flipped $E_8$ {GUT}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {341--388},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/}
}
K. V. Stepanyantz. Gauge coupling unification in the flipped $E_8$ GUT. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 341-388. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/
[1] J. A. Minahan, P. Ramond, R. C. Warner, “Comment on anomaly cancellation in the standard model”, Phys. Rev. D, 41:2 (1990), 715–716 | DOI
[2] A. Bilal, Lectures on anomalies, arXiv: 0802.0634
[3] H. Georgi, S. L. Glashow, “Unity of all elementary-particle forces”, Phys. Rev. Lett., 32:8 (1974), 438–441 | DOI
[4] R. N. Mohapatra, Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics: The Frontiers of Quark-Lepton Physics, Springer, New York, 2002 | DOI | MR
[5] J. R. Ellis, S. Kelley, D. V. Nanopoulos, “Probing the desert using gauge coupling unification”, Phys. Lett. B, 260:1–2 (1991), 131–137 | DOI
[6] U. Amaldi, W. de Boer, H. Furstenau, “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP”, Phys. Lett. B, 260:3–4 (1991), 447 | DOI
[7] P. Langacker, M. X. Luo, “Implications of precision electroweak experiments for $m_t$, $\rho_{0}$, $\sin^2\theta_W$, and grand unification”, Phys. Rev. D, 44:3 (1991), 817–822 | DOI
[8] S. Dimopoulos, H. Georgi, “Softly broken supersymmetry and $SU(5)$”, Nucl. Phys. B, 193:1 (1981), 150–162 | DOI
[9] N. Sakai, “Naturalness in supersymmetric GUTS”, Z. Phys. C, 11:2 (1981), 153–157 | DOI
[10] R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “Review of Particle Physics”, Prog. Theor. Exp. Phys., 2022:8 (2022), 083C01, 2270 pp. | DOI
[11] Y. Kawamura, “Triplet-doublet splitting, proton stability and extra dimension”, Prog. Theor. Phys., 105:6 (2001), 999–1006, arXiv: hep-ph/0012125 | DOI
[12] G. Altarelli, F. Feruglio, “$SU(5)$ grand unification in extra dimensions and proton decay”, Phys. Lett. B, 511:2–4 (2001), 257–264, arXiv: hep-ph/0102301 | DOI
[13] L. J. Hall, Y. Nomura, “Gauge unification in higher dimensions”, Phys. Rev. D, 64:5 (2001), 055003, 10 pp., arXiv: hep-ph/0103125 | DOI
[14] A. B. Kobakhidze, “Proton stability in TeV scale GUTs”, Phys. Lett. B, 514:1–2 (2001), 131–138, arXiv: hep-ph/0102323 | DOI
[15] S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, Lecture Notes in Physics, 939, Springer, Cham, 2017 | DOI | MR
[16] T. P. Cheng, L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ. Press, New York, 1984 | MR
[17] R. Slansky, “Group theory for unified model building”, Phys. Rep., 79:1 (1981), 1–128 | DOI | MR
[18] H. Fritzsch, P. Minkowski, “Unified interactions of leptons and hadrons”, Ann. Phys., 93:1–2 (1975), 193–266 | DOI | MR
[19] H. Georgi, “The state of the art-gauge theories”, AIP Conf. Proc., 23:1 (1975), 575–582 | DOI
[20] A. S. Joshipura, B. P. Kodrani, K. M. Patel, “Fermion masses and mixings in a $\mu$-$\tau$ symmetric $SO(10)$”, Phys. Rev. D, 79:11 (2009), 115017, 11 pp., arXiv: 0903.2161 | DOI
[21] K. M. Patel, “An S$O(10) \times S_4\times Z_n$ model of quark-lepton complementarity”, Phys. Lett. B, 695:1–4 (2011), 225–230, arXiv: 1008.5061 | DOI
[22] A. S. Joshipura, K. M. Patel, “Fermion masses in $SO(10)$ models”, Phys. Rev. D, 83:9 (2011), 095002, 17 pp., arXiv: 1102.5148 | DOI
[23] V. De Romeri, M. Hirsch, M. Malinský, “Soft masses in SUSY $SO(10)$ GUTs with low intermediate scales”, Phys. Rev. D, 84:5 (2011), 053012, 15 pp., arXiv: 1107.3412 | DOI
[24] K. S. Babu, I. Gogoladze, P. Nath, R. M. Syed, “Variety of $SO(10)$ GUTs with natural doublet-triplet splitting via the missing partner mechanism”, Phys. Rev. D, 85:7 (2012), 0750022, 15 pp., arXiv: 1112.5387 | DOI
[25] K. S. Babu, R. N. Mohapatra, “Coupling unification, GUT scale baryogenesis and neutron-antineutron oscillation in $SO(10)$”, Phys. Lett. B, 715:4–5 (2012), 328–334, arXiv: 1206.5701 | DOI
[26] R. L. Awasthi, M. K. Parida, S. Patra, “Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and $\mathrm{SO}(10)$ grand unification with low mass $ W_R$, $Z_R$ bosons”, JHEP, 08 (2013), 122, 49 pp., arXiv: 1302.0672 | DOI
[27] G. Altarelli, D. Meloni, “A non supersymmetric $\mathrm{SO}(10)$ grand unified model for all the physics below $M_{GUT}$”, JHEP, 08 (2013), 021, 21 pp., arXiv: 1305.1001 | DOI
[28] Y. Mambrini, N. Nagata, K. A. Olive, J. Zheng, “Vacuum stability and radiative electroweak symmetry breaking in an $\mathrm{SO}(10)$ dark matter model”, Phys. Rev. D, 93:11 (2016), 111703, 5 pp., arXiv: 1602.05583 | DOI
[29] K. S. Babu, B. Bajc, S. Saad, “Yukawa sector of minimal $SO(10)$ unification”, JHEP, 02 (2017), 136, 25 pp., arXiv: 1612.04329 | DOI
[30] F. Björkeroth, F. J. de Anda, S. F. King, E. Perdomo, “A natural $S_{4} \times SO(10)$ model of flavour”, JHEP, 10 (2017), 148, 28 pp., arXiv: 1705.01555 | DOI
[31] F. F. Deppisch, T. E. Gonzalo, L. Graf, “Surveying the $\mathrm{SO}(10)$ model landscape: The left-right symmetric case”, Phys. Rev. D, 96:5 (2017), 055003, 19 pp., arXiv: 1705.05416 | DOI
[32] J. Chakrabortty, R. Maji, S. K. Patra, T. Srivastava, S. Mohanty, “Roadmap of left-right models based on GUTs”, Phys. Rev. D, 97:9 (2018), 095010, 49 pp., arXiv: 1711.11391 | DOI
[33] S. Antusch, C. Hohl, S. F. King, V. Susič, “Non-universal $Z'$ from $\mathrm{SO}(10)$ GUTs with vector-like family and the origin of neutrino masses”, Nucl. Phys. B, 934 (2018), 578–605, arXiv: 1712.05366 | DOI | MR
[34] R. N. Mohapatra, M. Severson, “Leptonic $CP$ violation and proton decay in SUSY $\mathrm{SO}(10)$”, JHEP, 09 (2018), 119, 32 pp., arXiv: 1805.05776 | DOI
[35] K. S. Babu, B. Bajc, S. Saad, “Resurrecting minimal Yukawa sector of SUSY $\mathrm{SO}(10)$”, JHEP, 10 (2018), 135, 25 pp., arXiv: 1805.10631 | DOI
[36] S. A. R. Ellis, T. Gherghetta, K. Kaneta, K. A. Olive, “New weak-scale physics from $\mathrm{SO}(10)$ with high-scale supersymmetry”, Phys. Rev. D, 98:5 (2018), 055009, 22 pp., arXiv: 1807.06488 | DOI
[37] S. M. Boucenna, T. Ohlsson, M. Pernow, “A minimal non-supersymmetric $\mathrm{SO}(10)$ model with Peccei–Quinn symmetry”, Phys. Lett. B, 792 (2019), 251–257, arXiv: 1812.10548 | DOI | MR
[38] K. S. Babu, T. Fukuyama, S. Khan, S. Saad, “Peccei–Quinn symmetry and nucleon decay in renormalizable SUSY $SO$(10)”, JHEP, 06 (2019), 045, 33 pp., arXiv: 1812.11695 | DOI
[39] T. Ohlsson, M. Pernow, “Fits to non-supersymmetric $\mathrm{SO}(10)$ models with type I and II seesaw mechanisms using renormalization group evolution”, JHEP, 06 (2019), 085, 21 pp., arXiv: 1903.08241 | DOI | MR
[40] N. Haba, Y. Mimura, T. Yamada, “Detectable dimension-6 proton decay in SUSY $\mathrm{SO}(10)$ GUT at Hyper-Kamiokande”, JHEP, 07 (2019), 155, 14 pp., arXiv: 1904.11697 | DOI
[41] J. Chakrabortty, R. Maji, S. F. King, “Unification, proton decay, and topological defects in non-SUSY GUTs with thresholds”, Phys. Rev. D, 99:9 (2019), 095008, 34 pp., arXiv: 1901.05867 | DOI | MR
[42] M. Chakraborty, M. K. Parida, B. Sahoo, “Triplet leptogenesis, type-II seesaw dominance, intrinsic dark matter, vacuum stability and proton decay in minimal $\mathrm{SO}(10)$ breakings”, J. Cosmol. Astropart. Phys., 2020:01 (2020), 049, 55 pp., arXiv: 1906.05601 | DOI
[43] Y. Hamada, M. Ibe, Y. Muramatsu, K.-Y. Oda, N. Yokozaki, “Proton decay and axion dark matter in $SO$(10) grand unification via minimal left-right symmetry”, Eur. Phys. J. C, 80:5 (2020), 482, 13 pp., arXiv: 2001.05235 | DOI
[44] T. Ohlsson, M. Pernow, E. Sönnerlind, “Realizing unification in two different $\mathrm{SO}(10)$ models with one intermediate breaking scale”, Eur. Phys. J. C, 80:11 (2020), 1089, 7 pp., arXiv: 2006.13936 | DOI
[45] J. Chakrabortty, G. Lazarides, R. Maji, Q. Shafi, “Primordial monopoles and strings, inflation, and gravity waves”, JHEP, 02 (2021), 114, 34 pp., arXiv: 2011.01838 | DOI | MR
[46] S. F. King, S. Pascoli, J. Turner, Y.-L. Zhou, “Confronting $\mathrm{SO}(10)$ GUTs with proton decay and gravitational waves”, JHEP, 10 (2021), 225, 38 pp., arXiv: 2106.15634 | DOI
[47] G. J. Ding, S. F. King, J. N. Lu, “$\mathrm{SO}(10)$ models with $A_{4}$ modular symmetry”, JHEP, 11 (2021), 007, 42 pp., arXiv: 2108.09655 | DOI | MR
[48] V. S. Mummidi, K. M. Patel, “Leptogenesis and fermion mass fit in a renormalizable $SO(10)$ model”, JHEP, 12 (2021), 042, 25 pp., arXiv: 2109.04050 | DOI | MR
[49] G.-C. Cho, K. Hayami, N. Okada, “$\mathrm{SO}(10)$ grand unification with minimal dark matter and color octet scalars”, Phys. Rev. D, 105:1 (2022), 015027, 9 pp., arXiv: 2110.03884 | DOI
[50] K. M. Patel, S. K. Shukla, “Anatomy of scalar mediated proton decays in $\mathrm{SO}(10)$ models”, JHEP, 08 (2022), 042, 32 pp., arXiv: 2203.07748 | DOI | MR
[51] A. Held, J. Kwapisz, L. Sartore, “Grand unification and the Planck scale: an $\mathrm{SO}(10)$ example of radiative symmetry breaking”, JHEP, 08 (2022), 122, 68 pp., arXiv: 2204.03001 | DOI | MR
[52] P. Sahu, A. Bhatta, R. Mohanta, S. Singirala, S. Patra, “Flavour anomalies and dark matter assisted unification in $\mathrm{SO}(10)$ GUT”, JHEP, 11 (2022), 029, 39 pp., arXiv: 2204.06392 | DOI | MR
[53] R. Maji, Q. Shafi, “Monopoles, strings and gravitational waves in non-minimal inflation”, J. Cosmol. Astropart. Phys., 03 (2023), 007, 19 pp., arXiv: 2208.08137 | DOI | MR
[54] G. Lazarides, R. Maji, R. Roshan, Q. Shafi, “A predictive SO(10) model”, J. Cosmol. Astropart. Phys., 12 (2022), 009, 32 pp., arXiv: 2210.03710 | DOI | MR
[55] N. Haba, T. Yamada, “Conditions for suppressing dimension-five proton decay in renormalizable SUSY $\mathrm{SO}(10)$ GUT”, JHEP, 02 (2023), 148, 27 pp., arXiv: 2211.10091 | DOI
[56] K. M. Patel, S. K. Shukla, “Spectrum of color sextet scalars in realistic $SO(10)$ GUT”, Phys. Rev. D, 107:5 (2023), 055008, 15 pp., arXiv: 2211.11283 | DOI | MR
[57] K. M. Patel, “Minimal spontaneous $CP$-violating GUT and predictions for leptonic $CP$ phases”, Phys. Rev. D, 107:7 (2023), 075041, 7 pp., arXiv: 2212.04095 | DOI
[58] S. M. Barr, “A new symmetry breaking pattern for $\mathrm{SO}(10)$ and proton decay”, Phys. Lett. B, 112:3 (1982), 219–222 | DOI
[59] I. Antoniadis, J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, “Supersymmetric flipped $\mathrm{SU}(5)$ revitalized”, Phys. Lett. B, 194:2 (1987), 231–235 | DOI
[60] B. A. Campbell, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive, “Supercosmology revitalized”, Phys. Lett. B, 197:3 (1987), 355–362 | DOI
[61] J. Ellis, J. S. Hagelin, S. Kelley, D. V. Nanopoulos, “Aspects of the flipped unification of strong, weak and electromagnetic interactions”, Nucl. Phys. B, 311:1 (1988), 1–34 | DOI
[62] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Proton decay: flipped vs. unflipped $\mathrm{SU}(5)$”, JHEP, 05 (2020), 021, 26 pp., arXiv: 2003.03285 | DOI
[63] M. Mehmood, M. U. Rehman, Q. Shafi, “Observable proton decay in flipped $\mathrm{SU}(5)$”, JHEP, 02 (2021), 181, 25 pp., arXiv: 2010.01665 | DOI
[64] N. Haba, T. Yamada, “Moderately suppressed dimension-five proton decay in a flipped $\mathrm{SU}(5)$ model”, JHEP, 01 (2022), 061, 18 pp., arXiv: 2110.01198 | DOI | MR
[65] J. Ellis, J. L. Evans, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Flipped $\mathrm{SU}(5)$ GUT phenomenology: proton decay and $g_\mu - 2$”, Eur. Phys. J. C, 81:12 (2021), 1109, 18 pp., arXiv: 2110.06833 | DOI
[66] A. Masiero, D. V. Nanopoulos, K. Tamvakis, T. Yanagida, “Naturally massless Higgs doublets in supersymmetric $\mathrm{SU}(5)$”, Phys. Lett. B, 115:5 (1982), 380–384
[67] B. Grinstein, “A supersymmetric $\mathrm{SU}(5)$ gauge theory with no gauge hierarchy problem”, Nucl. Phys. B, 206:3 (1982), 387–396 | DOI
[68] J. Hisano, T. Moroi, K. Tobe, T. Yanagida, “Suppression of proton decay in the missing-partner model for supersymmetric $\mathrm{SU}(5)$ GUT”, Phys. Lett. B, 342:1–4 (1995), 138–144, arXiv: hep-ph/9406417 | DOI
[69] I. Antoniadis, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, “GUT model-building with fermionic four-dimensional strings”, Phys. Lett. B, 205:4 (1988), 459–465 | DOI | MR
[70] I. Antoniadis, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, “The flipped $\mathrm{SU}(5) \times \mathrm{U}(1)$ string model revamped”, Phys. Lett. B, 231:1–2 (1989), 65–74 | DOI | MR
[71] C. S. Huang, T. Li, C. Liu, J. P. Shock, F. Wu, Y. L. Wu, “Embedding flipped $\mathrm{SU}(5)$ into $\mathrm{SO}(10)$”, JHEP, 10 (2006), 035, 25 pp., arXiv: hep-ph/0606087 | DOI | MR
[72] Y.-C. Chung, “On global flipped $\mathrm{SU}(5)$ GUTs in F-theory”, JHEP, 03 (2011), 126, 37 pp., arXiv: 1008.2506 | DOI | MR
[73] E. Kuflik, J. Marsano, “Comments on flipped $\mathrm{SU}(5)$ (and F-theory)”, JHEP, 03 (2011), 020, 35 pp., arXiv: 1009.2510 | DOI | MR
[74] J. Ellis, A. Mustafayev, K. A. Olive, “Constrained supersymmetric flipped $\mathrm{SU}(5)$ GUT phenomenology”, Eur. Phys. J. C, 71:7 (2011), 1689, 15 pp., arXiv: 1103.5140 | DOI
[75] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Symmetry breaking and reheating after inflation in no-scale flipped $\mathrm{SU}(5)$”, J. Cosmol. Astropart. Phys., 2019:04 (2019), 009–009, arXiv: 1812.08184 | DOI
[76] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Cosmology with a master coupling in flipped $SU(5) \times U(1)$: the $\lambda_6$ universe”, Phys. Lett. B, 797 (2019), 134864, 5 pp., arXiv: 1906.08483 | DOI | MR
[77] K. Hamaguchi, S. Hor, N. Nagata, “$R$-symmetric flipped $\mathrm{SU}(5)$”, JHEP, 11 (2020), 140, 30 pp., arXiv: 2008.08940 | DOI | MR
[78] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10 (2021), 046, 45 pp., arXiv: 2108.05026 | DOI | MR
[79] G. Charalampous, S. F. King, G. K. Leontaris, Y. L. Zhou, “Flipped $SU(5)$ with modular $A_4$ symmetry”, Phys. Rev. D, 104:11 (2021), 115015, 16 pp., arXiv: 2109.11379 | DOI | MR
[80] I. Antoniadis, D. V. Nanopoulos, J. Rizos, “Particle physics and cosmology of the string derived no-scale flipped $SU(5)$”, Eur. Phys. J. C, 82:4 (2022), 377, 23 pp., arXiv: 2112.01211 | DOI
[81] V. Basiouris, G. K. Leontaris, “Sterile neutrinos, $0\nu \beta \beta $ decay and the W-boson mass anomaly in a flipped $SU(5)$ from F-theory”, Eur. Phys. J. C, 82:11 (2022), 1041, 23 pp., arXiv: 2205.00758 | DOI
[82] X. K. Du, F. Wang, “Flavor structures of quarks and leptons from flipped $\mathrm{SU}(5)$ GUT with $A_{4}$ modular flavor symmetry”, JHEP, 01 (2023), 036, 50 pp., arXiv: 2209.08796 | DOI
[83] F. Gürsey, P. Ramond, P. Sikivie, “A universal gauge theory model based on $E_6$”, Phys. Lett. B, 60:2 (1976), 177–180 | DOI
[84] S. F. King, S. Moretti, R. Nevzorov, “A review of the exceptional supersymmetric standard model”, Symmetry, 12:4 (2020), 557, 34 pp., arXiv: 2002.02788 | DOI
[85] P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, “Vacuum configurations for superstrings”, Nucl. Phys. B, 258 (1985), 46–74 | DOI
[86] E. Witten, “Symmetry breaking patterns in superstring models”, Nucl. Phys. B, 258:1 (1985), 75–100 | DOI | MR
[87] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, v. 2, Petlevye amplitudy, anomalii i fenomenologiya, Mir, M., 1990 | MR
[88] F. Caravaglios, S. Morisi, Fermion masses in $E_6$ grand unification with family permutation symmetries, arXiv: hep-ph/0510321
[89] B. Stech, Z. Tavartkiladze, “Generation symmetry and $E_6$ unification”, Phys. Rev. D, 77:7 (2008), 076009, 16 pp., arXiv: 0802.0894 | DOI
[90] S. F. King, R. Luo, D. J. Miller, R. Nevzorov, “Leptogenesis in the exceptional supersymmetric standard model: flavour dependent lepton asymmetries”, JHEP, 12 (2008), 042, 40 pp., arXiv: 0806.0330 | DOI
[91] P. Athron, S. F. King, D. J. Miller, S. Moretti, R. Nevzorov, “Predictions of the constrained exceptional supersymmetric standard model”, Phys. Lett. B, 681:5 (2009), 448–456, arXiv: 0901.1192 | DOI
[92] P. Athron, S. F. King, D. J. Miller, S. Moretti, R. Nevzorov, “Constrained exceptional supersymmetric standard model”, Phys. Rev. D, 80:3 (2009), 035009, 31 pp., arXiv: 0904.2169 | DOI
[93] C. R. Das, L. V. Laperashvili, A. Tureanu, “Superstring-inspired $E_6$ unification, shadow theta-particles and cosmology”, Phys. Part. Nucl., 41:6 (2010), 965–968, arXiv: 1012.0624 | DOI
[94] J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, M. Sher, “Novel Higgs decays and dark matter in the exceptional supersymmetric standard model”, Phys. Rev. D, 83:7 (2011), 075013, 20 pp., arXiv: 1012.5114 | DOI
[95] F. Wang, “Supersymmetry breaking scalar masses and trilinear soft terms from high-dimensional operators in $E_6$ SUSY GUT”, Nucl. Phys. B, 851:1 (2011), 104–142, arXiv: 1103.0069 | DOI
[96] R. Nevzorov, S. Pakvasa, “Exotic Higgs decays in the $E_6$ inspired SUSY models”, Phys. Lett. B, 728 (2014), 210–215, arXiv: 1308.1021 | DOI
[97] P. Athron, M. Mühlleitner, R. Nevzorov, A. G. Williams, “Non-standard Higgs decays in $\mathrm{U}(1)$ extensions of the MSSM”, JHEP, 01 (2015), 153, 37 pp., arXiv: 1410.6288 | DOI
[98] R. Nevzorov, A. W. Thomas, “$E_6$ inspired composite Higgs model”, Phys. Rev. D, 92:7 (2015), 075007, 19 pp., arXiv: 1507.02101 | DOI
[99] P. Athron, D. Harries, R. Nevzorov, A. G. Williams, “$E_6$ inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs”, Phys. Lett. B, 760 (2016), 19–25, arXiv: 1512.07040 | DOI
[100] P. Ko, Y. Omura, C. Yu, “Higgs and dark matter physics in the type-II two-Higgs-doublet model inspired by $E_{6}$ GUT”, JHEP, 06 (2015), 034, 29 pp., arXiv: 1502.00262 | DOI
[101] P. Athron, D. Harries, R. Nevzorov, A. G. Williams, “Dark matter in a constrained $E_{6}$ inspired SUSY mode”, JHEP, 12 (2016), 128, 125 pp., arXiv: 1610.03374 | DOI
[102] R. Nevzorov, A. W. Thomas, “Baryon asymmetry generation in the E$_6$CHM”, Phys. Lett. B, 774 (2017), 123–129, arXiv: 1706.02856 | DOI
[103] R. Nevzorov, “$E_6$ inspired SUSY models with custodial symmetry”, Internat. J. Modern Phys. A, 33:31 (2018), 1844007, 10 pp., arXiv: 1805.08260 | DOI
[104] B. Dutta, S. Ghosh, I. Gogoladze, T. Li, “Three-loop neutrino masses via new massive gauge bosons from $E_6$ GUT”, Phys. Rev. D, 98:5 (2018), 055028, 12 pp., arXiv: 1805.01866 | DOI
[105] R. Nevzorov, A. W. Thomas, “$E_{6}$ inspired composite Higgs model and baryon asymmetry generation”, Phys. Part. Nucl., 51:4 (2020), 709–713, arXiv: 2001.09843 | DOI
[106] R. Nevzorov, “$E_6$ GUT and baryon asymmetry generation in the E$_6$CHM”, Universe, 8:1 (2022), 33, 27 pp. | DOI
[107] R. Nevzorov, “On the suppression of the dark matter-nucleon scattering cross section in the SE$_{6}$SSM”, Symmetry, 14:10 (2022), 2090, 14 pp., arXiv: 2209.00505 | DOI
[108] R. Nevzorov, “Leptogenesis and dark matter-nucleon scattering cross section in the SE$_{6}$SSM”, Universe, 9:3 (2023), 137, 19 pp., arXiv: 2304.04629 | DOI
[109] S. E. Konshtein, E. S. Fradkin, “Asimptoticheski supersimmetrichnaya model edinogo vzaimodeistviya, osnovannaya na $E_8$”, Pisma v ZhETF, 32:9 (1980), 575–578
[110] N. S. Baaklini, “Supergrand unification in $E_8$”, Phys. Lett. B, 91:3–4 (1980), 376–378 | DOI
[111] N. S. Baaklini, “Supersymmetric exceptional gauge unification”, Phys. Rev. D, 22:12 (1980), 3118–3127 | DOI
[112] I. Bars, M. Günaydin, “Grand unification with the exceptional group $E_8$”, Phys. Rev. Lett., 45:11 (1980), 859–862 | DOI | MR
[113] M. Koca, “On tumbling $E_8$”, Phys. Lett. B, 107:1–2 (1981), 73–76 | DOI
[114] C.-L. Ong, “Supersymmetric models for quarks and leptons with nonlinearly realized $E_8$ symmetry”, Phys. Rev. D, 31:12 (1985), 3271–3279 | DOI | MR
[115] W. Buchmüller, O. Napoly, “Exceptional coset spaces and the spectrum of quarks and leptons”, Phys. Lett. B, 163:1–4 (1985), 161–166 | DOI | MR
[116] S. Thomas, “Softly broken $N=4$ and $E_8$”, J. Phys. A: Math. Gen., 19:7 (1986), 1141–1149 | DOI | MR
[117] S. M. Barr, “$E_8$ family unification, mirror fermions, and new low-energy physics”, Phys. Rev. D, 37:1 (1988), 204–209 | DOI
[118] S. Mahapatra, B. B. Deo, “Supergravity-induced $E_8$ gauge hierarchies”, Phys. Rev. D, 38:11 (1988), 3554–3558 | DOI
[119] S. L. Adler, “Should $E_8$ SUSY Yang–Mills be reconsidered as a family unification model?”, Phys. Lett. B, 533:1–2 (2002), 121–125, arXiv: hep-ph/0201009 | DOI | MR
[120] S. L. Adler, Further thoughts on supersymmetric $E_8$ as a family and grand unification theory, arXiv: hep-ph/0401212
[121] J. E. Camargo-Molina, A. P. Morais, A. Ordell, R. Pasechnik, M. O. P. Sampaio, J. Wessén, “Reviving trinification models through an $\mathrm{E}_6$-extended supersymmetric GUT”, Phys. Rev. D, 95:7 (2017), 075031, 6 pp., arXiv: 1610.03642 | DOI
[122] A. P. Morais, R. Pasechnik, W. Porod, “Prospects for new physics from gauge left-right-colour-family grand unification hypothesis”, Eur. Phys. J. C, 80:12 (2020), 1162, 32 pp., arXiv: 2001.06383 | DOI
[123] A. Aranda, F. J. de Anda, S. F. King, “Exceptional unification of families and forces”, Nucl. Phys. B, 960 (2020), 115209, 29 pp., arXiv: 2005.03048 | DOI | MR
[124] A. P. Morais, R. Pasechnik, W. Porod, “Grand unified origin of gauge interactions and families replication in the Standard Model”, Universe, 7:12 (2021), 461, 11 pp., arXiv: 2001.04804 | DOI
[125] A. Aranda, F. J. de Anda, A. P. Morais, R. Pasechnik, Can $E_8$ unification at low energies be consistent with proton decay?, arXiv: 2107.05421
[126] M. F. Sohnius, P. C. West, “Conformal invariance in $N=4$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 100:3 (1981), 245–250 | DOI
[127] M. T. Grisaru, W. Siegel, “Supergraphity: (II). Manifestly covariant rules and higher-loop finiteness”, Nucl. Phys. B, 201:2 (1982), 292–314 | DOI
[128] P. S. Howe, K. S. Stelle, P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made manifest”, Nucl. Phys. B, 236:1 (1984), 125–166 | DOI | MR
[129] S. Mandelstam, “Light-cone superspace and the ultraviolet finiteness of the $N=4$ model”, Nucl. Phys. B, 213:1 (1983), 149–168 | DOI | MR
[130] L. Brink, O. Lindgren, B. E. W. Nilsson, “$N=4$ Yang–Mills theory on the light cone”, Nucl. Phys. B, 212:3 (1983), 401–412 | DOI
[131] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, v. 1, Vvedenie, Mir, M., 1990 | MR
[132] E. Boos, “Induced spontaneous symmetry breaking chain”, Europhys. Lett., 136:2 (2022), 21003, 5 pp., arXiv: 2106.07181 | DOI