Gauge coupling unification in the flipped $E_8$ GUT
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 341-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The gauge coupling unification is investigated at the classical level under the assumptions that the gauge symmetry breaking chain is $E_8\to E_7\times U_1 \to E_6\times U_1 \to SO_{10}\times U_1 \to SU_5 \times U_1 \to SU_3 \times SU_2 \times U_1$ and only components of the representations 248 of $E_8$ can acquire vacuum expectation values. We demonstrate that there are several options for the relations between the gauge couplings of the resulting theory, but the only symmetry breaking pattern corresponds to $\alpha_3=\alpha_2$ and $\sin^2\theta_\mathrm{W}=3/8$. Moreover, only for this option does the particle content of the resulting theory include all MSSM superfields. It is also noted that this symmetry breaking pattern corresponds to the case where all representation that acquire vacuum expectation values have the minimal absolute values of the relevant $U_1$ charges.
Keywords: Grand Unified theories
Mots-clés : exceptional Lie algebras
@article{TMF_2024_218_2_a8,
     author = {K. V. Stepanyantz},
     title = {Gauge coupling unification in the~flipped $E_8$ {GUT}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--388},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/}
}
TY  - JOUR
AU  - K. V. Stepanyantz
TI  - Gauge coupling unification in the flipped $E_8$ GUT
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 341
EP  - 388
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/
LA  - ru
ID  - TMF_2024_218_2_a8
ER  - 
%0 Journal Article
%A K. V. Stepanyantz
%T Gauge coupling unification in the flipped $E_8$ GUT
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 341-388
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/
%G ru
%F TMF_2024_218_2_a8
K. V. Stepanyantz. Gauge coupling unification in the flipped $E_8$ GUT. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 341-388. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a8/

[1] J. A. Minahan, P. Ramond, R. C. Warner, “Comment on anomaly cancellation in the standard model”, Phys. Rev. D, 41:2 (1990), 715–716 | DOI

[2] A. Bilal, Lectures on anomalies, arXiv: 0802.0634

[3] H. Georgi, S. L. Glashow, “Unity of all elementary-particle forces”, Phys. Rev. Lett., 32:8 (1974), 438–441 | DOI

[4] R. N. Mohapatra, Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics: The Frontiers of Quark-Lepton Physics, Springer, New York, 2002 | DOI | MR

[5] J. R. Ellis, S. Kelley, D. V. Nanopoulos, “Probing the desert using gauge coupling unification”, Phys. Lett. B, 260:1–2 (1991), 131–137 | DOI

[6] U. Amaldi, W. de Boer, H. Furstenau, “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP”, Phys. Lett. B, 260:3–4 (1991), 447 | DOI

[7] P. Langacker, M. X. Luo, “Implications of precision electroweak experiments for $m_t$, $\rho_{0}$, $\sin^2\theta_W$, and grand unification”, Phys. Rev. D, 44:3 (1991), 817–822 | DOI

[8] S. Dimopoulos, H. Georgi, “Softly broken supersymmetry and $SU(5)$”, Nucl. Phys. B, 193:1 (1981), 150–162 | DOI

[9] N. Sakai, “Naturalness in supersymmetric GUTS”, Z. Phys. C, 11:2 (1981), 153–157 | DOI

[10] R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “Review of Particle Physics”, Prog. Theor. Exp. Phys., 2022:8 (2022), 083C01, 2270 pp. | DOI

[11] Y. Kawamura, “Triplet-doublet splitting, proton stability and extra dimension”, Prog. Theor. Phys., 105:6 (2001), 999–1006, arXiv: hep-ph/0012125 | DOI

[12] G. Altarelli, F. Feruglio, “$SU(5)$ grand unification in extra dimensions and proton decay”, Phys. Lett. B, 511:2–4 (2001), 257–264, arXiv: hep-ph/0102301 | DOI

[13] L. J. Hall, Y. Nomura, “Gauge unification in higher dimensions”, Phys. Rev. D, 64:5 (2001), 055003, 10 pp., arXiv: hep-ph/0103125 | DOI

[14] A. B. Kobakhidze, “Proton stability in TeV scale GUTs”, Phys. Lett. B, 514:1–2 (2001), 131–138, arXiv: hep-ph/0102323 | DOI

[15] S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, Lecture Notes in Physics, 939, Springer, Cham, 2017 | DOI | MR

[16] T. P. Cheng, L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ. Press, New York, 1984 | MR

[17] R. Slansky, “Group theory for unified model building”, Phys. Rep., 79:1 (1981), 1–128 | DOI | MR

[18] H. Fritzsch, P. Minkowski, “Unified interactions of leptons and hadrons”, Ann. Phys., 93:1–2 (1975), 193–266 | DOI | MR

[19] H. Georgi, “The state of the art-gauge theories”, AIP Conf. Proc., 23:1 (1975), 575–582 | DOI

[20] A. S. Joshipura, B. P. Kodrani, K. M. Patel, “Fermion masses and mixings in a $\mu$-$\tau$ symmetric $SO(10)$”, Phys. Rev. D, 79:11 (2009), 115017, 11 pp., arXiv: 0903.2161 | DOI

[21] K. M. Patel, “An S$O(10) \times S_4\times Z_n$ model of quark-lepton complementarity”, Phys. Lett. B, 695:1–4 (2011), 225–230, arXiv: 1008.5061 | DOI

[22] A. S. Joshipura, K. M. Patel, “Fermion masses in $SO(10)$ models”, Phys. Rev. D, 83:9 (2011), 095002, 17 pp., arXiv: 1102.5148 | DOI

[23] V. De Romeri, M. Hirsch, M. Malinský, “Soft masses in SUSY $SO(10)$ GUTs with low intermediate scales”, Phys. Rev. D, 84:5 (2011), 053012, 15 pp., arXiv: 1107.3412 | DOI

[24] K. S. Babu, I. Gogoladze, P. Nath, R. M. Syed, “Variety of $SO(10)$ GUTs with natural doublet-triplet splitting via the missing partner mechanism”, Phys. Rev. D, 85:7 (2012), 0750022, 15 pp., arXiv: 1112.5387 | DOI

[25] K. S. Babu, R. N. Mohapatra, “Coupling unification, GUT scale baryogenesis and neutron-antineutron oscillation in $SO(10)$”, Phys. Lett. B, 715:4–5 (2012), 328–334, arXiv: 1206.5701 | DOI

[26] R. L. Awasthi, M. K. Parida, S. Patra, “Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and $\mathrm{SO}(10)$ grand unification with low mass $ W_R$, $Z_R$ bosons”, JHEP, 08 (2013), 122, 49 pp., arXiv: 1302.0672 | DOI

[27] G. Altarelli, D. Meloni, “A non supersymmetric $\mathrm{SO}(10)$ grand unified model for all the physics below $M_{GUT}$”, JHEP, 08 (2013), 021, 21 pp., arXiv: 1305.1001 | DOI

[28] Y. Mambrini, N. Nagata, K. A. Olive, J. Zheng, “Vacuum stability and radiative electroweak symmetry breaking in an $\mathrm{SO}(10)$ dark matter model”, Phys. Rev. D, 93:11 (2016), 111703, 5 pp., arXiv: 1602.05583 | DOI

[29] K. S. Babu, B. Bajc, S. Saad, “Yukawa sector of minimal $SO(10)$ unification”, JHEP, 02 (2017), 136, 25 pp., arXiv: 1612.04329 | DOI

[30] F. Björkeroth, F. J. de Anda, S. F. King, E. Perdomo, “A natural $S_{4} \times SO(10)$ model of flavour”, JHEP, 10 (2017), 148, 28 pp., arXiv: 1705.01555 | DOI

[31] F. F. Deppisch, T. E. Gonzalo, L. Graf, “Surveying the $\mathrm{SO}(10)$ model landscape: The left-right symmetric case”, Phys. Rev. D, 96:5 (2017), 055003, 19 pp., arXiv: 1705.05416 | DOI

[32] J. Chakrabortty, R. Maji, S. K. Patra, T. Srivastava, S. Mohanty, “Roadmap of left-right models based on GUTs”, Phys. Rev. D, 97:9 (2018), 095010, 49 pp., arXiv: 1711.11391 | DOI

[33] S. Antusch, C. Hohl, S. F. King, V. Susič, “Non-universal $Z'$ from $\mathrm{SO}(10)$ GUTs with vector-like family and the origin of neutrino masses”, Nucl. Phys. B, 934 (2018), 578–605, arXiv: 1712.05366 | DOI | MR

[34] R. N. Mohapatra, M. Severson, “Leptonic $CP$ violation and proton decay in SUSY $\mathrm{SO}(10)$”, JHEP, 09 (2018), 119, 32 pp., arXiv: 1805.05776 | DOI

[35] K. S. Babu, B. Bajc, S. Saad, “Resurrecting minimal Yukawa sector of SUSY $\mathrm{SO}(10)$”, JHEP, 10 (2018), 135, 25 pp., arXiv: 1805.10631 | DOI

[36] S. A. R. Ellis, T. Gherghetta, K. Kaneta, K. A. Olive, “New weak-scale physics from $\mathrm{SO}(10)$ with high-scale supersymmetry”, Phys. Rev. D, 98:5 (2018), 055009, 22 pp., arXiv: 1807.06488 | DOI

[37] S. M. Boucenna, T. Ohlsson, M. Pernow, “A minimal non-supersymmetric $\mathrm{SO}(10)$ model with Peccei–Quinn symmetry”, Phys. Lett. B, 792 (2019), 251–257, arXiv: 1812.10548 | DOI | MR

[38] K. S. Babu, T. Fukuyama, S. Khan, S. Saad, “Peccei–Quinn symmetry and nucleon decay in renormalizable SUSY $SO$(10)”, JHEP, 06 (2019), 045, 33 pp., arXiv: 1812.11695 | DOI

[39] T. Ohlsson, M. Pernow, “Fits to non-supersymmetric $\mathrm{SO}(10)$ models with type I and II seesaw mechanisms using renormalization group evolution”, JHEP, 06 (2019), 085, 21 pp., arXiv: 1903.08241 | DOI | MR

[40] N. Haba, Y. Mimura, T. Yamada, “Detectable dimension-6 proton decay in SUSY $\mathrm{SO}(10)$ GUT at Hyper-Kamiokande”, JHEP, 07 (2019), 155, 14 pp., arXiv: 1904.11697 | DOI

[41] J. Chakrabortty, R. Maji, S. F. King, “Unification, proton decay, and topological defects in non-SUSY GUTs with thresholds”, Phys. Rev. D, 99:9 (2019), 095008, 34 pp., arXiv: 1901.05867 | DOI | MR

[42] M. Chakraborty, M. K. Parida, B. Sahoo, “Triplet leptogenesis, type-II seesaw dominance, intrinsic dark matter, vacuum stability and proton decay in minimal $\mathrm{SO}(10)$ breakings”, J. Cosmol. Astropart. Phys., 2020:01 (2020), 049, 55 pp., arXiv: 1906.05601 | DOI

[43] Y. Hamada, M. Ibe, Y. Muramatsu, K.-Y. Oda, N. Yokozaki, “Proton decay and axion dark matter in $SO$(10) grand unification via minimal left-right symmetry”, Eur. Phys. J. C, 80:5 (2020), 482, 13 pp., arXiv: 2001.05235 | DOI

[44] T. Ohlsson, M. Pernow, E. Sönnerlind, “Realizing unification in two different $\mathrm{SO}(10)$ models with one intermediate breaking scale”, Eur. Phys. J. C, 80:11 (2020), 1089, 7 pp., arXiv: 2006.13936 | DOI

[45] J. Chakrabortty, G. Lazarides, R. Maji, Q. Shafi, “Primordial monopoles and strings, inflation, and gravity waves”, JHEP, 02 (2021), 114, 34 pp., arXiv: 2011.01838 | DOI | MR

[46] S. F. King, S. Pascoli, J. Turner, Y.-L. Zhou, “Confronting $\mathrm{SO}(10)$ GUTs with proton decay and gravitational waves”, JHEP, 10 (2021), 225, 38 pp., arXiv: 2106.15634 | DOI

[47] G. J. Ding, S. F. King, J. N. Lu, “$\mathrm{SO}(10)$ models with $A_{4}$ modular symmetry”, JHEP, 11 (2021), 007, 42 pp., arXiv: 2108.09655 | DOI | MR

[48] V. S. Mummidi, K. M. Patel, “Leptogenesis and fermion mass fit in a renormalizable $SO(10)$ model”, JHEP, 12 (2021), 042, 25 pp., arXiv: 2109.04050 | DOI | MR

[49] G.-C. Cho, K. Hayami, N. Okada, “$\mathrm{SO}(10)$ grand unification with minimal dark matter and color octet scalars”, Phys. Rev. D, 105:1 (2022), 015027, 9 pp., arXiv: 2110.03884 | DOI

[50] K. M. Patel, S. K. Shukla, “Anatomy of scalar mediated proton decays in $\mathrm{SO}(10)$ models”, JHEP, 08 (2022), 042, 32 pp., arXiv: 2203.07748 | DOI | MR

[51] A. Held, J. Kwapisz, L. Sartore, “Grand unification and the Planck scale: an $\mathrm{SO}(10)$ example of radiative symmetry breaking”, JHEP, 08 (2022), 122, 68 pp., arXiv: 2204.03001 | DOI | MR

[52] P. Sahu, A. Bhatta, R. Mohanta, S. Singirala, S. Patra, “Flavour anomalies and dark matter assisted unification in $\mathrm{SO}(10)$ GUT”, JHEP, 11 (2022), 029, 39 pp., arXiv: 2204.06392 | DOI | MR

[53] R. Maji, Q. Shafi, “Monopoles, strings and gravitational waves in non-minimal inflation”, J. Cosmol. Astropart. Phys., 03 (2023), 007, 19 pp., arXiv: 2208.08137 | DOI | MR

[54] G. Lazarides, R. Maji, R. Roshan, Q. Shafi, “A predictive SO(10) model”, J. Cosmol. Astropart. Phys., 12 (2022), 009, 32 pp., arXiv: 2210.03710 | DOI | MR

[55] N. Haba, T. Yamada, “Conditions for suppressing dimension-five proton decay in renormalizable SUSY $\mathrm{SO}(10)$ GUT”, JHEP, 02 (2023), 148, 27 pp., arXiv: 2211.10091 | DOI

[56] K. M. Patel, S. K. Shukla, “Spectrum of color sextet scalars in realistic $SO(10)$ GUT”, Phys. Rev. D, 107:5 (2023), 055008, 15 pp., arXiv: 2211.11283 | DOI | MR

[57] K. M. Patel, “Minimal spontaneous $CP$-violating GUT and predictions for leptonic $CP$ phases”, Phys. Rev. D, 107:7 (2023), 075041, 7 pp., arXiv: 2212.04095 | DOI

[58] S. M. Barr, “A new symmetry breaking pattern for $\mathrm{SO}(10)$ and proton decay”, Phys. Lett. B, 112:3 (1982), 219–222 | DOI

[59] I. Antoniadis, J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, “Supersymmetric flipped $\mathrm{SU}(5)$ revitalized”, Phys. Lett. B, 194:2 (1987), 231–235 | DOI

[60] B. A. Campbell, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive, “Supercosmology revitalized”, Phys. Lett. B, 197:3 (1987), 355–362 | DOI

[61] J. Ellis, J. S. Hagelin, S. Kelley, D. V. Nanopoulos, “Aspects of the flipped unification of strong, weak and electromagnetic interactions”, Nucl. Phys. B, 311:1 (1988), 1–34 | DOI

[62] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Proton decay: flipped vs. unflipped $\mathrm{SU}(5)$”, JHEP, 05 (2020), 021, 26 pp., arXiv: 2003.03285 | DOI

[63] M. Mehmood, M. U. Rehman, Q. Shafi, “Observable proton decay in flipped $\mathrm{SU}(5)$”, JHEP, 02 (2021), 181, 25 pp., arXiv: 2010.01665 | DOI

[64] N. Haba, T. Yamada, “Moderately suppressed dimension-five proton decay in a flipped $\mathrm{SU}(5)$ model”, JHEP, 01 (2022), 061, 18 pp., arXiv: 2110.01198 | DOI | MR

[65] J. Ellis, J. L. Evans, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Flipped $\mathrm{SU}(5)$ GUT phenomenology: proton decay and $g_\mu - 2$”, Eur. Phys. J. C, 81:12 (2021), 1109, 18 pp., arXiv: 2110.06833 | DOI

[66] A. Masiero, D. V. Nanopoulos, K. Tamvakis, T. Yanagida, “Naturally massless Higgs doublets in supersymmetric $\mathrm{SU}(5)$”, Phys. Lett. B, 115:5 (1982), 380–384

[67] B. Grinstein, “A supersymmetric $\mathrm{SU}(5)$ gauge theory with no gauge hierarchy problem”, Nucl. Phys. B, 206:3 (1982), 387–396 | DOI

[68] J. Hisano, T. Moroi, K. Tobe, T. Yanagida, “Suppression of proton decay in the missing-partner model for supersymmetric $\mathrm{SU}(5)$ GUT”, Phys. Lett. B, 342:1–4 (1995), 138–144, arXiv: hep-ph/9406417 | DOI

[69] I. Antoniadis, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, “GUT model-building with fermionic four-dimensional strings”, Phys. Lett. B, 205:4 (1988), 459–465 | DOI | MR

[70] I. Antoniadis, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, “The flipped $\mathrm{SU}(5) \times \mathrm{U}(1)$ string model revamped”, Phys. Lett. B, 231:1–2 (1989), 65–74 | DOI | MR

[71] C. S. Huang, T. Li, C. Liu, J. P. Shock, F. Wu, Y. L. Wu, “Embedding flipped $\mathrm{SU}(5)$ into $\mathrm{SO}(10)$”, JHEP, 10 (2006), 035, 25 pp., arXiv: hep-ph/0606087 | DOI | MR

[72] Y.-C. Chung, “On global flipped $\mathrm{SU}(5)$ GUTs in F-theory”, JHEP, 03 (2011), 126, 37 pp., arXiv: 1008.2506 | DOI | MR

[73] E. Kuflik, J. Marsano, “Comments on flipped $\mathrm{SU}(5)$ (and F-theory)”, JHEP, 03 (2011), 020, 35 pp., arXiv: 1009.2510 | DOI | MR

[74] J. Ellis, A. Mustafayev, K. A. Olive, “Constrained supersymmetric flipped $\mathrm{SU}(5)$ GUT phenomenology”, Eur. Phys. J. C, 71:7 (2011), 1689, 15 pp., arXiv: 1103.5140 | DOI

[75] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Symmetry breaking and reheating after inflation in no-scale flipped $\mathrm{SU}(5)$”, J. Cosmol. Astropart. Phys., 2019:04 (2019), 009–009, arXiv: 1812.08184 | DOI

[76] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive, “Cosmology with a master coupling in flipped $SU(5) \times U(1)$: the $\lambda_6$ universe”, Phys. Lett. B, 797 (2019), 134864, 5 pp., arXiv: 1906.08483 | DOI | MR

[77] K. Hamaguchi, S. Hor, N. Nagata, “$R$-symmetric flipped $\mathrm{SU}(5)$”, JHEP, 11 (2020), 140, 30 pp., arXiv: 2008.08940 | DOI | MR

[78] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10 (2021), 046, 45 pp., arXiv: 2108.05026 | DOI | MR

[79] G. Charalampous, S. F. King, G. K. Leontaris, Y. L. Zhou, “Flipped $SU(5)$ with modular $A_4$ symmetry”, Phys. Rev. D, 104:11 (2021), 115015, 16 pp., arXiv: 2109.11379 | DOI | MR

[80] I. Antoniadis, D. V. Nanopoulos, J. Rizos, “Particle physics and cosmology of the string derived no-scale flipped $SU(5)$”, Eur. Phys. J. C, 82:4 (2022), 377, 23 pp., arXiv: 2112.01211 | DOI

[81] V. Basiouris, G. K. Leontaris, “Sterile neutrinos, $0\nu \beta \beta $ decay and the W-boson mass anomaly in a flipped $SU(5)$ from F-theory”, Eur. Phys. J. C, 82:11 (2022), 1041, 23 pp., arXiv: 2205.00758 | DOI

[82] X. K. Du, F. Wang, “Flavor structures of quarks and leptons from flipped $\mathrm{SU}(5)$ GUT with $A_{4}$ modular flavor symmetry”, JHEP, 01 (2023), 036, 50 pp., arXiv: 2209.08796 | DOI

[83] F. Gürsey, P. Ramond, P. Sikivie, “A universal gauge theory model based on $E_6$”, Phys. Lett. B, 60:2 (1976), 177–180 | DOI

[84] S. F. King, S. Moretti, R. Nevzorov, “A review of the exceptional supersymmetric standard model”, Symmetry, 12:4 (2020), 557, 34 pp., arXiv: 2002.02788 | DOI

[85] P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, “Vacuum configurations for superstrings”, Nucl. Phys. B, 258 (1985), 46–74 | DOI

[86] E. Witten, “Symmetry breaking patterns in superstring models”, Nucl. Phys. B, 258:1 (1985), 75–100 | DOI | MR

[87] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, v. 2, Petlevye amplitudy, anomalii i fenomenologiya, Mir, M., 1990 | MR

[88] F. Caravaglios, S. Morisi, Fermion masses in $E_6$ grand unification with family permutation symmetries, arXiv: hep-ph/0510321

[89] B. Stech, Z. Tavartkiladze, “Generation symmetry and $E_6$ unification”, Phys. Rev. D, 77:7 (2008), 076009, 16 pp., arXiv: 0802.0894 | DOI

[90] S. F. King, R. Luo, D. J. Miller, R. Nevzorov, “Leptogenesis in the exceptional supersymmetric standard model: flavour dependent lepton asymmetries”, JHEP, 12 (2008), 042, 40 pp., arXiv: 0806.0330 | DOI

[91] P. Athron, S. F. King, D. J. Miller, S. Moretti, R. Nevzorov, “Predictions of the constrained exceptional supersymmetric standard model”, Phys. Lett. B, 681:5 (2009), 448–456, arXiv: 0901.1192 | DOI

[92] P. Athron, S. F. King, D. J. Miller, S. Moretti, R. Nevzorov, “Constrained exceptional supersymmetric standard model”, Phys. Rev. D, 80:3 (2009), 035009, 31 pp., arXiv: 0904.2169 | DOI

[93] C. R. Das, L. V. Laperashvili, A. Tureanu, “Superstring-inspired $E_6$ unification, shadow theta-particles and cosmology”, Phys. Part. Nucl., 41:6 (2010), 965–968, arXiv: 1012.0624 | DOI

[94] J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, M. Sher, “Novel Higgs decays and dark matter in the exceptional supersymmetric standard model”, Phys. Rev. D, 83:7 (2011), 075013, 20 pp., arXiv: 1012.5114 | DOI

[95] F. Wang, “Supersymmetry breaking scalar masses and trilinear soft terms from high-dimensional operators in $E_6$ SUSY GUT”, Nucl. Phys. B, 851:1 (2011), 104–142, arXiv: 1103.0069 | DOI

[96] R. Nevzorov, S. Pakvasa, “Exotic Higgs decays in the $E_6$ inspired SUSY models”, Phys. Lett. B, 728 (2014), 210–215, arXiv: 1308.1021 | DOI

[97] P. Athron, M. Mühlleitner, R. Nevzorov, A. G. Williams, “Non-standard Higgs decays in $\mathrm{U}(1)$ extensions of the MSSM”, JHEP, 01 (2015), 153, 37 pp., arXiv: 1410.6288 | DOI

[98] R. Nevzorov, A. W. Thomas, “$E_6$ inspired composite Higgs model”, Phys. Rev. D, 92:7 (2015), 075007, 19 pp., arXiv: 1507.02101 | DOI

[99] P. Athron, D. Harries, R. Nevzorov, A. G. Williams, “$E_6$ inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs”, Phys. Lett. B, 760 (2016), 19–25, arXiv: 1512.07040 | DOI

[100] P. Ko, Y. Omura, C. Yu, “Higgs and dark matter physics in the type-II two-Higgs-doublet model inspired by $E_{6}$ GUT”, JHEP, 06 (2015), 034, 29 pp., arXiv: 1502.00262 | DOI

[101] P. Athron, D. Harries, R. Nevzorov, A. G. Williams, “Dark matter in a constrained $E_{6}$ inspired SUSY mode”, JHEP, 12 (2016), 128, 125 pp., arXiv: 1610.03374 | DOI

[102] R. Nevzorov, A. W. Thomas, “Baryon asymmetry generation in the E$_6$CHM”, Phys. Lett. B, 774 (2017), 123–129, arXiv: 1706.02856 | DOI

[103] R. Nevzorov, “$E_6$ inspired SUSY models with custodial symmetry”, Internat. J. Modern Phys. A, 33:31 (2018), 1844007, 10 pp., arXiv: 1805.08260 | DOI

[104] B. Dutta, S. Ghosh, I. Gogoladze, T. Li, “Three-loop neutrino masses via new massive gauge bosons from $E_6$ GUT”, Phys. Rev. D, 98:5 (2018), 055028, 12 pp., arXiv: 1805.01866 | DOI

[105] R. Nevzorov, A. W. Thomas, “$E_{6}$ inspired composite Higgs model and baryon asymmetry generation”, Phys. Part. Nucl., 51:4 (2020), 709–713, arXiv: 2001.09843 | DOI

[106] R. Nevzorov, “$E_6$ GUT and baryon asymmetry generation in the E$_6$CHM”, Universe, 8:1 (2022), 33, 27 pp. | DOI

[107] R. Nevzorov, “On the suppression of the dark matter-nucleon scattering cross section in the SE$_{6}$SSM”, Symmetry, 14:10 (2022), 2090, 14 pp., arXiv: 2209.00505 | DOI

[108] R. Nevzorov, “Leptogenesis and dark matter-nucleon scattering cross section in the SE$_{6}$SSM”, Universe, 9:3 (2023), 137, 19 pp., arXiv: 2304.04629 | DOI

[109] S. E. Konshtein, E. S. Fradkin, “Asimptoticheski supersimmetrichnaya model edinogo vzaimodeistviya, osnovannaya na $E_8$”, Pisma v ZhETF, 32:9 (1980), 575–578

[110] N. S. Baaklini, “Supergrand unification in $E_8$”, Phys. Lett. B, 91:3–4 (1980), 376–378 | DOI

[111] N. S. Baaklini, “Supersymmetric exceptional gauge unification”, Phys. Rev. D, 22:12 (1980), 3118–3127 | DOI

[112] I. Bars, M. Günaydin, “Grand unification with the exceptional group $E_8$”, Phys. Rev. Lett., 45:11 (1980), 859–862 | DOI | MR

[113] M. Koca, “On tumbling $E_8$”, Phys. Lett. B, 107:1–2 (1981), 73–76 | DOI

[114] C.-L. Ong, “Supersymmetric models for quarks and leptons with nonlinearly realized $E_8$ symmetry”, Phys. Rev. D, 31:12 (1985), 3271–3279 | DOI | MR

[115] W. Buchmüller, O. Napoly, “Exceptional coset spaces and the spectrum of quarks and leptons”, Phys. Lett. B, 163:1–4 (1985), 161–166 | DOI | MR

[116] S. Thomas, “Softly broken $N=4$ and $E_8$”, J. Phys. A: Math. Gen., 19:7 (1986), 1141–1149 | DOI | MR

[117] S. M. Barr, “$E_8$ family unification, mirror fermions, and new low-energy physics”, Phys. Rev. D, 37:1 (1988), 204–209 | DOI

[118] S. Mahapatra, B. B. Deo, “Supergravity-induced $E_8$ gauge hierarchies”, Phys. Rev. D, 38:11 (1988), 3554–3558 | DOI

[119] S. L. Adler, “Should $E_8$ SUSY Yang–Mills be reconsidered as a family unification model?”, Phys. Lett. B, 533:1–2 (2002), 121–125, arXiv: hep-ph/0201009 | DOI | MR

[120] S. L. Adler, Further thoughts on supersymmetric $E_8$ as a family and grand unification theory, arXiv: hep-ph/0401212

[121] J. E. Camargo-Molina, A. P. Morais, A. Ordell, R. Pasechnik, M. O. P. Sampaio, J. Wessén, “Reviving trinification models through an $\mathrm{E}_6$-extended supersymmetric GUT”, Phys. Rev. D, 95:7 (2017), 075031, 6 pp., arXiv: 1610.03642 | DOI

[122] A. P. Morais, R. Pasechnik, W. Porod, “Prospects for new physics from gauge left-right-colour-family grand unification hypothesis”, Eur. Phys. J. C, 80:12 (2020), 1162, 32 pp., arXiv: 2001.06383 | DOI

[123] A. Aranda, F. J. de Anda, S. F. King, “Exceptional unification of families and forces”, Nucl. Phys. B, 960 (2020), 115209, 29 pp., arXiv: 2005.03048 | DOI | MR

[124] A. P. Morais, R. Pasechnik, W. Porod, “Grand unified origin of gauge interactions and families replication in the Standard Model”, Universe, 7:12 (2021), 461, 11 pp., arXiv: 2001.04804 | DOI

[125] A. Aranda, F. J. de Anda, A. P. Morais, R. Pasechnik, Can $E_8$ unification at low energies be consistent with proton decay?, arXiv: 2107.05421

[126] M. F. Sohnius, P. C. West, “Conformal invariance in $N=4$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 100:3 (1981), 245–250 | DOI

[127] M. T. Grisaru, W. Siegel, “Supergraphity: (II). Manifestly covariant rules and higher-loop finiteness”, Nucl. Phys. B, 201:2 (1982), 292–314 | DOI

[128] P. S. Howe, K. S. Stelle, P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made manifest”, Nucl. Phys. B, 236:1 (1984), 125–166 | DOI | MR

[129] S. Mandelstam, “Light-cone superspace and the ultraviolet finiteness of the $N=4$ model”, Nucl. Phys. B, 213:1 (1983), 149–168 | DOI | MR

[130] L. Brink, O. Lindgren, B. E. W. Nilsson, “$N=4$ Yang–Mills theory on the light cone”, Nucl. Phys. B, 212:3 (1983), 401–412 | DOI

[131] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, v. 1, Vvedenie, Mir, M., 1990 | MR

[132] E. Boos, “Induced spontaneous symmetry breaking chain”, Europhys. Lett., 136:2 (2022), 21003, 5 pp., arXiv: 2106.07181 | DOI