Infinitely many rotating periodic solutions for damped vibration systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of $Q$-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements.
Keywords: impulsive problem, rotating periodic solutions, Fountain theorem, critical point, damped vibration systems.
@article{TMF_2024_218_2_a7,
     author = {K. Khachnaoui},
     title = {Infinitely many rotating periodic solutions for damped vibration systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--340},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/}
}
TY  - JOUR
AU  - K. Khachnaoui
TI  - Infinitely many rotating periodic solutions for damped vibration systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 330
EP  - 340
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
LA  - ru
ID  - TMF_2024_218_2_a7
ER  - 
%0 Journal Article
%A K. Khachnaoui
%T Infinitely many rotating periodic solutions for damped vibration systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 330-340
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
%G ru
%F TMF_2024_218_2_a7
K. Khachnaoui. Infinitely many rotating periodic solutions for damped vibration systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/