@article{TMF_2024_218_2_a7,
author = {K. Khachnaoui},
title = {Infinitely many rotating periodic solutions for damped vibration systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {330--340},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/}
}
K. Khachnaoui. Infinitely many rotating periodic solutions for damped vibration systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
[1] A. Lakmeche, O. Arino, “Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment”, Dyn. Contin. Discrete Impulsive Systems, 7:2 (2000), 265–287 | MR | Zbl
[2] J. J. Nieto, R. Rodríguez-López, “New comparison results for impulsive integro-differential equations and applications”, J. Math. Anal. Appl., 328:2 (2007), 1343–1368 | DOI | MR
[3] J. Zhou, Y. Li, “Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects”, Nonlinear Anal.: Theory, Methods Appl., 72:3–4 (2010), 1594–1603 | DOI | MR
[4] Y. Tian, W. Ge, “Variational methods to Sturm–Liouville boundary value problem for impulsive differential equations”, Nonlinear Anal.: Theory, Methods Appl., 72:1 (2010), 277–287 | DOI | MR
[5] J. Sun, H. Chen, J. J. Nieto, M. Otero Novoa, “The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects”, Nonlinear Anal.: Theory, Methods Appl., 72:12 (2010), 4575–4586 | DOI | MR
[6] K. Khachnaoui, “New results on periodic solutions for second order damped vibration systems”, Ric. Mat., 72:2 (2023), 709–721 | DOI | MR
[7] T. Shen, W. Liu, “Infinitely many rotating periodic solutions for suplinear second-order impulsive Hamiltonian systems”, Appl. Math. Lett., 88 (2018), 164–170 | DOI | MR
[8] Z. Zhang, R. Yuan, “An application of variational methods to Dirichlet boundary value problem with impulses”, Nonlinear Anal.: Real World Appl., 11:1 (2010), 155–162 | DOI
[9] X. Chang, Y. Li, “Rotating periodic solutions of second order dissipative dynamical systems”, Discrete Contin. Dyn. Syst., 36:2 (2016), 643–652 | DOI | MR
[10] X. Chang, Y. Li, “Rotating periodic solutions for second-order dynamical systems with singularities of repulsive type”, Math. Methods Appl. Sci., 40:8 (2017), 3092–3099 | DOI | MR
[11] G. Liu, Y. Li, X. Yang, “Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity”, Math. Methods Appl. Sci., 40:18 (2017), 7139–7150 | DOI | MR
[12] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989 | DOI | MR
[13] T. Bartsch, “Infinitely many solutions of a symmetric Dirichlet problem”, Nonlinear Anal.: Theory, Methods Appl., 20:10 (1993), 1205–1216 | DOI | MR
[14] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity”, Nonlinear Anal.: Theory, Methods Appl., 7:9 (1983), 981–1012 | DOI | MR
[15] G. Cerami, “An existence criterion for the critical points on unbounded manifolds”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112:2 (1978), 332–336 | MR