Infinitely many rotating periodic solutions for damped vibration systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of $Q$-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements.
Keywords: impulsive problem, rotating periodic solutions, Fountain theorem, critical point, damped vibration systems.
@article{TMF_2024_218_2_a7,
     author = {K. Khachnaoui},
     title = {Infinitely many rotating periodic solutions for damped vibration systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--340},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/}
}
TY  - JOUR
AU  - K. Khachnaoui
TI  - Infinitely many rotating periodic solutions for damped vibration systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 330
EP  - 340
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
LA  - ru
ID  - TMF_2024_218_2_a7
ER  - 
%0 Journal Article
%A K. Khachnaoui
%T Infinitely many rotating periodic solutions for damped vibration systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 330-340
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
%G ru
%F TMF_2024_218_2_a7
K. Khachnaoui. Infinitely many rotating periodic solutions for damped vibration systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/

[1] A. Lakmeche, O. Arino, “Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment”, Dyn. Contin. Discrete Impulsive Systems, 7:2 (2000), 265–287 | MR | Zbl

[2] J. J. Nieto, R. Rodríguez-López, “New comparison results for impulsive integro-differential equations and applications”, J. Math. Anal. Appl., 328:2 (2007), 1343–1368 | DOI | MR

[3] J. Zhou, Y. Li, “Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects”, Nonlinear Anal.: Theory, Methods Appl., 72:3–4 (2010), 1594–1603 | DOI | MR

[4] Y. Tian, W. Ge, “Variational methods to Sturm–Liouville boundary value problem for impulsive differential equations”, Nonlinear Anal.: Theory, Methods Appl., 72:1 (2010), 277–287 | DOI | MR

[5] J. Sun, H. Chen, J. J. Nieto, M. Otero Novoa, “The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects”, Nonlinear Anal.: Theory, Methods Appl., 72:12 (2010), 4575–4586 | DOI | MR

[6] K. Khachnaoui, “New results on periodic solutions for second order damped vibration systems”, Ric. Mat., 72:2 (2023), 709–721 | DOI | MR

[7] T. Shen, W. Liu, “Infinitely many rotating periodic solutions for suplinear second-order impulsive Hamiltonian systems”, Appl. Math. Lett., 88 (2018), 164–170 | DOI | MR

[8] Z. Zhang, R. Yuan, “An application of variational methods to Dirichlet boundary value problem with impulses”, Nonlinear Anal.: Real World Appl., 11:1 (2010), 155–162 | DOI

[9] X. Chang, Y. Li, “Rotating periodic solutions of second order dissipative dynamical systems”, Discrete Contin. Dyn. Syst., 36:2 (2016), 643–652 | DOI | MR

[10] X. Chang, Y. Li, “Rotating periodic solutions for second-order dynamical systems with singularities of repulsive type”, Math. Methods Appl. Sci., 40:8 (2017), 3092–3099 | DOI | MR

[11] G. Liu, Y. Li, X. Yang, “Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity”, Math. Methods Appl. Sci., 40:18 (2017), 7139–7150 | DOI | MR

[12] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989 | DOI | MR

[13] T. Bartsch, “Infinitely many solutions of a symmetric Dirichlet problem”, Nonlinear Anal.: Theory, Methods Appl., 20:10 (1993), 1205–1216 | DOI | MR

[14] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity”, Nonlinear Anal.: Theory, Methods Appl., 7:9 (1983), 981–1012 | DOI | MR

[15] G. Cerami, “An existence criterion for the critical points on unbounded manifolds”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112:2 (1978), 332–336 | MR