Infinitely many rotating periodic solutions for damped vibration systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of $Q$-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
impulsive problem, rotating periodic solutions, Fountain theorem, critical point, damped vibration systems.
                    
                  
                
                
                @article{TMF_2024_218_2_a7,
     author = {K. Khachnaoui},
     title = {Infinitely many rotating periodic solutions for damped vibration systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--340},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/}
}
                      
                      
                    K. Khachnaoui. Infinitely many rotating periodic solutions for damped vibration systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 330-340. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a7/
