Lotka--Volterra~model with mutations and generative adversarial networks
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 320-329

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of population genetics of the Lotka–Volterra type with mutations on a statistical manifold is introduced. Mutations in the model are described by diffusion on a statistical manifold with a generator in the form of a Laplace–Beltrami operator with a Fisher–Rao metric, that is, the model combines population genetics and information geometry. This model describes a generalization of the model of machine learning theory, the model of generative adversarial network (GAN), to the case of populations of generative adversarial networks. The introduced model describes the control of overfitting for generating adversarial networks.
Keywords: learning theory, population genetics, theory of evolution.
@article{TMF_2024_218_2_a6,
     author = {S. V. Kozyrev},
     title = {Lotka--Volterra~model with mutations and generative adversarial networks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {320--329},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a6/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Lotka--Volterra~model with mutations and generative adversarial networks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 320
EP  - 329
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a6/
LA  - ru
ID  - TMF_2024_218_2_a6
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Lotka--Volterra~model with mutations and generative adversarial networks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 320-329
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a6/
%G ru
%F TMF_2024_218_2_a6
S. V. Kozyrev. Lotka--Volterra~model with mutations and generative adversarial networks. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 320-329. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a6/