Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 280-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the Hamiltonian system consisting of the Klein–Gordon field and an infinite harmonic crystal. The dynamics of the coupled system is translation-invariant with respect to the discrete subgroup $\mathbb{Z}^d$ of $\mathbb{R}^d$. The initial date is assumed to be a random function that is close to two spatially homogeneous (with respect to the subgroup $\mathbb{Z}^d$) processes when $\pm x_1>a$ with some $a>0$. We study the distribution $\mu_t$ of the solution at time $t\in\mathbb{R}$ and prove the weak convergence of $\mu_t$ to a Gaussian measure $\mu_\infty$ as $t\to\infty$. Moreover, we prove the convergence of the correlation functions to a limit and derive the explicit formulas for the covariance of the limit measure $\mu_\infty$. We give an application to Gibbs measures.
Keywords: Klein–Gordon field coupled to a harmonic crystal, Zak transform, random initial data, Gaussian and Gibbs measures, weak convergence of measures.
@article{TMF_2024_218_2_a4,
     author = {T. V. Dudnikova},
     title = {Stabilization of the~statistical solutions for large times for a~harmonic lattice coupled to {a~Klein{\textendash}Gordon} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {280--305},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a4/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 280
EP  - 305
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a4/
LA  - ru
ID  - TMF_2024_218_2_a4
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 280-305
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a4/
%G ru
%F TMF_2024_218_2_a4
T. V. Dudnikova. Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 280-305. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a4/

[1] T. V. Dudnikova, A. I. Komech, H. Spohn, “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80, arXiv: math-ph/0508044 | MR

[2] T. V. Dudnikova, A. I. Komech, N. J. Mauser, “On two-temperature problem for harmonic crystals”, J. Stat. Phys., 114:3–4 (2004), 1035–1083, arXiv: math-ph/0211017 | DOI | MR

[3] T. V. Dudnikova, A. I. Komech, “On the convergence to a statistical equilibrium in the crystal coupled to a scalar field”, Russ. J. Math. Phys., 12:3 (2005), 301–325, arXiv: math-ph/0508053 | MR

[4] T. V. Dudnikova, A. I. Komech, “O dvukhtemperaturnoi probleme dlya uravneniya Kleina–Gordona”, Teoriya veroyatn. i ee primen., 50:4 (2005), 675–710 | DOI | DOI | MR | Zbl

[5] T. V. Dudnikova, “Convergence to stationary states and energy current for infinite harmonic crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453 | DOI

[6] T. V. Dudnikova, “Skhodimost k statsionarnym neravnovesnym sostoyaniyam dlya uravnenii Kleina–Gordona”, Izv. RAN. Ser. matem., 85:5 (2021), 110–131 | DOI | DOI | MR

[7] N. Ashkroft, N. Mermin, Fizika tverdogo tela, Mir, M., 1979

[8] G. Panati, H. Spohn, S. Teufel, “Effective dynamics for Bloch electrons: Peierls substitution and beyond”, Commun. Math. Phys., 242:3 (2003), 547–578, arXiv: math-ph/0212041 | DOI

[9] G. Panati, H. Spohn, S. Teufel, “Motion of electrons in adiabatically perturbed periodic structures”, Analysis, Modeling and Simulation of Multiscale Problems, ed. A. Mielke, Springer, Berlin, Heidelberg, 2006, 595–618, arXiv: 0712.4365 | DOI | MR

[10] J. Zak, “Dynamics of electrons in solids in external fields”, Phys. Rev., 168:3 (1968), 686–695 | DOI

[11] C. Boldrighini, A. Pellegrinotti, L. Triolo, “Convergence to stationary states for infinite harmonic systems”, J. Stat. Phys., 30:1 (1983), 123–155 | DOI | MR

[12] H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”, Commun. Math. Phys., 54:2 (1977), 97–120 | DOI | MR

[13] J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Commun. Math. Phys., 201:3 (1999), 657–697 | DOI | MR

[14] L. Rey-Bellet, L. E. Thomas, “Exponential convergence to non-equilibrium stationary states in classical statistical mechanics”, Commun. Math. Phys., 225:2 (2002), 305–329 | DOI | MR

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[16] M. A. Rosenblatt, “A central limit theorem and a strong mixing condition”, Proc. Nat. Acad. Sci. USA, 42:1 (1956), 43–47 | DOI | MR

[17] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR

[18] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971 | DOI | MR

[19] Y. Katznelson, An Introduction in Harmonic Analysis, Cambridge Univ. Press, Cambridge, 2004 | MR

[20] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | DOI | MR

[21] B. Simon, Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge Univ. Press, Cambridge, 1979 | MR