Keywords: Lagrangian, Einstein–Hilbert action, Vlasov–Einstein equation.
@article{TMF_2024_218_2_a3,
author = {V. V. Vedenyapin and N. N. Fimin and V. M. Chechetkin},
title = {Vlasov{\textendash}Maxwell{\textendash}Einstein-type equations and their consequences. {Applications} to astrophysical problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {258--279},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a3/}
}
TY - JOUR AU - V. V. Vedenyapin AU - N. N. Fimin AU - V. M. Chechetkin TI - Vlasov–Maxwell–Einstein-type equations and their consequences. Applications to astrophysical problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 258 EP - 279 VL - 218 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a3/ LA - ru ID - TMF_2024_218_2_a3 ER -
%0 Journal Article %A V. V. Vedenyapin %A N. N. Fimin %A V. M. Chechetkin %T Vlasov–Maxwell–Einstein-type equations and their consequences. Applications to astrophysical problems %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 258-279 %V 218 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a3/ %G ru %F TMF_2024_218_2_a3
V. V. Vedenyapin; N. N. Fimin; V. M. Chechetkin. Vlasov–Maxwell–Einstein-type equations and their consequences. Applications to astrophysical problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 258-279. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a3/
[1] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1983 | MR | MR | Zbl
[2] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Gostekhizdat, M., 1955 | MR | MR | Zbl
[3] S. Veinberg, Gravitatsiya i kosmologiya. Printsipy i prilozheniya obschei teorii otnositelnosti, Mir, M., 1975
[4] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR
[5] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR | Zbl
[6] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford Univ. Press, Oxford, 2009 | MR
[7] C. Cercignani, G. M. Kremer, The Relativistic Boltzmann Equation: Theory an Applications, Progress in Mathematical Physics, 22, Birkhäuser, Basel, 2002 | DOI | MR
[8] J. Ehlers, “General relativity and kinetic theory”, General Relativity and Cosmology, Proceedings of the International School of Physics “Enrico Fermi”. Course XLVII (Italian Physical Society, June 30 – July 12, 1969), ed. R. K. Sachs, Academic Press, New York, 1971, 1–70 | MR
[9] L. Andersson, M. Korzyński, Variational principle for the Einstein–Vlasov equations, arXiv: 1910.12152
[10] R. W. Lindquist, “Relativistic transport theory”, Ann. Phys., 37:3 (1966), 487–518 | DOI
[11] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR
[12] N. A. Chernikov, “Kineticheskoe uravnenie dlya relyativistskogo gaza v proizvolnom gravitatsionnom pole”, Dokl. AN SSSR, 144:1 (1962), 89–92 | MR | Zbl
[13] Yu. L. Klimontovich, “Relyativistskie kineticheskie uravneniya dlya plazmy”, ZhETF, 37:3 (1959), 735–746 | Zbl
[14] Y. Choquet-Bruhat, Introduction to General Relativity, Black Holes, and Cosmology, Oxford Univ. Press, Oxford, 2015 | MR
[15] Yu. G. Ignatev, Relyativistskaya kineticheskaya teoriya neravnovesnykh protsessov, OOO “Foliant”', Kazan, 2010
[16] V. V. Vedenyapin, V. I. Parenkina, S. R. Svirschevskii, “O vyvode uravnenii elektrodinamiki i gravitatsii iz printsipa naimenshego deistviya”, Zh. vychisl. matem. i matem. fiz., 62:6 (2022), 1016–1029 | DOI | DOI | MR
[17] V. V. Vedenyapin, V. I. Parenkina, A. G. Petrov, Chzhan Khaochen, “Uravnenie Vlasova–\allowbreakEinshteina i tochki Lagranzha”, Preprinty IPM im. M. V. Keldysha, 23, 2022 | DOI
[18] V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “K voprosu o vyvode uravneniya Vlasova–\allowbreakMaksvella–\allowbreakEinshteina i ego svyaz s kosmologicheskim lyambda-chlenom”, Vestn. Mosk. gos. obl. un-ta. Ser. Fiz.-matem., 2019, no. 2, 24–48 | DOI
[19] V. V. Vedenyapin, “Uravnenie Vlasova–Maksvella–Einshteina”, Preprinty IPM im. M. V. Keldysha, 188, 2018 | DOI
[20] V. V. Vedenyapin, M. A. Negmatov, “O vyvode i klassifikatsii uravnenii tipa uravneniya Vlasova i magnitnoi gidrodinamiki. Tozhdestvo Lagranzha i forma Godunova”, TMF, 170:3 (2012), 468–480 | DOI | DOI | MR
[21] V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Uravneniya tipa Vlasova i Liuvillya, ikh mikroskopicheskie, energeticheskie i gidrodinamicheskie sledstviya”, Izv. RAN. Ser. matem., 81:3 (2017), 45–82 | DOI | DOI | MR
[22] V. V. Vedenyapin, M. A. Negmatov, “O vyvode i klassifikatsii uravnenii tipa Vlasova i magnitnoi gidrodinamiki. Tozhdestvo Lagranzha, forma Godunova i kriticheskaya massa”, Trudy Shestoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 14–21 avgusta, 2011). Chast 3, SMFN, 47, RUDN, M., 2013, 5–17 | DOI
[23] V. V. Vedenyapin, M. A. Negmatov, “O topologii statsionarnykh reshenii gidrodinamicheskikh i vikhrevykh sledstvii uravneniya Vlasova i metod Gamiltona–Yakobi”, Dokl. RAN, 449:5 (2013), 521–526 | DOI | DOI
[24] V. V. Vedenyapin, M. Yu. Voronina, A. A. Russkov, “O vyvode uravnenii elektrodinamiki i gravitatsii iz printsipa naimenshego deistviya”, Dokl. RAN. Ser. Fizika, tekhn. nauki, 495:1 (2020), 9–13 | DOI | DOI
[25] G. Rein, A. D. Rendall, “Smooth static solutions of the spherically symmetric Vlasov–Einstein system”, Ann. Inst. H. Poincaré Phys. Théor., 59:4 (1993), 383–397 | MR
[26] T. Okabe, P. J. Morrison, J. E. Friedrichsen, L. C. Shepley, “Hamiltonian dynamics of spatially-homogeneous Vlasov–Einstein systems”, Phys. Rev. D, 84:2 (2011), 024001, 11 pp. | DOI
[27] H. E. Kandrup, P. J. Morrison, “Hamiltonian structure of the Vlasov–Einstein system and the problem of stability for spherical relativistic star clusters”, Ann. Phys., 225:1 (1993), 114–166 | DOI | MR
[28] V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equations system”, Eur. Phys. J. Plus, 136:6 (2021), 670, 11 pp. | DOI
[29] V. Vedenyapin, N. Fimin, V. Chechetkin, “The system of Vlasov–Maxwell–Einstein-type equations and its nonrelativistic and weak relativistic limits”, Internat. J. Modern Phys. D, 29:1 (2020), 2050006, 23 pp. | DOI | MR