Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 238-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Random Hamiltonian flows in an infinite-dimensional phase space is represented by random unitary groups in a Hilbert space. For this, the phase space is equipped with a measure that is invariant under a group of symplectomorphisms. The obtained representation of random flows allows applying the Chernoff averaging technique to random processes with values in the group of nonlinear operators. The properties of random unitary groups and the limit distribution for their compositions are described.
Keywords: random operator, random Hamiltonian flow, invariant measure, A. Weil theorem, Gaussian random walk, Laplace–Volterra operator, Sobolev space
Mots-clés : Kolmogorov–Fokker–Planck equation.
@article{TMF_2024_218_2_a2,
     author = {V. M. Busovikov and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Unitary representation of walks along random vector fields and {the~Kolmogorov{\textendash}Fokker{\textendash}Planck} equation in {a~Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--257},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/}
}
TY  - JOUR
AU  - V. M. Busovikov
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
TI  - Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 238
EP  - 257
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/
LA  - ru
ID  - TMF_2024_218_2_a2
ER  - 
%0 Journal Article
%A V. M. Busovikov
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%T Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 238-257
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/
%G ru
%F TMF_2024_218_2_a2
V. M. Busovikov; Yu. N. Orlov; V. Zh. Sakbaev. Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 238-257. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/

[1] V. Zh. Sakbaev, “Flows in infinite-dimensional phase space equipped with a finitely-additive invariant measure”, Mathematics, 11:5 (2023), 1161, 49 pp. | DOI

[2] V. M. Busovikov, V. Zh. Sakbaev, “Invariant measures for Hamiltonian flows and diffusion in infinitely dimensional phase spaces”, Internat. J. Modern Phys. A, 37:20–21 (2022), 2243018, 15 pp. | MR

[3] V. A. Glazatov, V. Zh. Sakbaev, “Mery na gilbertovom prostranstve, invariantnye otnositelno gamiltonovykh potokov”, Ufimsk. matem. zhurn., 14:2 (2022), 3–22 | DOI

[4] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Fizmatlit, M., 1985 | DOI | MR

[5] R. L. Baker, “ ‘Lebesgue measure’ on $R^{\infty}$. II”, Proc. Amer. Math. Soc., 132:9 (2004), 2577–2591 | DOI | MR

[6] V. V. Kozlov, O. G. Smolyanov, “Gamiltonov podkhod k vtorichnomu kvantovaniyu”, Dokl. RAN, 483:2 (2018), 1–4 | DOI | DOI

[7] O. G. Smolyanov, N. N. Shamarov, “Kvantovanie po Shredingeru beskonechnomernykh gamiltonovykh sistem s nekvadratichnoi funktsiei Gamiltona”, Dokl. RAN. Matematika, informatika, prots. upr., 492:1 (2020), 65–69 | DOI | DOI

[8] I. V. Volovich, “Complete integrability of quantum and classical dynamical systems”, $p$-Adic Numbers, Ultrametric Analysis and Applications, 11:4 (2019), 328–334 | DOI | MR

[9] Dzh. Gof, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Randomizirovannoe kvantovanie gamiltonovykh sistem”, Dokl. RAN. Matem., inform., prots. upr., 498 (2021), 31–36 | DOI | DOI | MR | Zbl

[10] V. Zh. Sakbaev, “Usrednenie sluchainykh bluzhdanii i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov”, TMF, 191:3 (2017), 473–502 | DOI | DOI | MR

[11] V. Zh. Sakbaev, O. G. Smolyanov, “Lebesgue–Feynman measures on infinite dimensional spaces”, Internat. J. Theoret. Phys., 60:2 (2021), 546–550 | DOI | MR

[12] T. Gill, A. Kirtadze, G. Pantsulaia, A. Plichko, “Existence and uniqueness of translation invariant measures in separable Banach spaces”, Funct. Approx. Comment. Math., 50:2 (2014), 401–419 | DOI | MR

[13] D. V. Zavadskii, “Invariantnye otnositelno sdvigov mery na prostranstvakh posledovatelnostei”, Trudy MFTI, 9:4 (2017), 142–148

[14] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR

[15] Yu. N. Orlov, V. Zh. Sakbaev, E. V. Shmidt, “Operator approach to weak convergence of measures and limit theorems for random operators”, Lobachevskii J. Math., 42:10 (2021), 2413–2426 | DOI | MR

[16] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | DOI | MR | MR | Zbl

[17] A. Yu. Khrennikov, “Simplekticheskaya geometriya na beskonechnomernom fazovom prostranstve i asimptoticheskoe predstavlenie kvantovykh srednikh gaussovymi funktsionalnymi integralami”, Izv. RAN. Ser. matem., 72:1 (2008), 137–160 | DOI | DOI | MR | Zbl

[18] V. Zh. Sakbaev, “Sluchainye bluzhdaniya i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov i povorotov”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 88–118 | DOI | MR | Zbl

[19] D. V. Zavadskii, V. Zh. Sakbaev, “Diffuziya na gilbertovom prostranstve, snabzhennom translyatsionno i rotatsionno invariantnoi meroi”, Matematicheskaya fizika i prilozheniya, Sbornik statei. K 95-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Trudy MIAN, 306, MIAN, M., 2019, 112–130 | DOI | DOI | MR

[20] V. M. Busovikov, V. Zh. Sakbaev, “Prostranstva Soboleva funktsii na gilbertovom prostranstve s translyatsionno invariantnoi meroi i approksimatsii polugrupp”, Izv. RAN. Ser. matem., 84:4 (2020), 79–109 | DOI | DOI | MR

[21] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | DOI | MR | Zbl

[22] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl

[23] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Formuly Feinmana i zakon bolshikh chisel dlya sluchainykh odnoparametricheskikh polugrupp”, Trudy MIAN, 306, MIAN, M., 2019, 210–226 | DOI | DOI | MR