Mots-clés : Kolmogorov–Fokker–Planck equation.
@article{TMF_2024_218_2_a2,
author = {V. M. Busovikov and Yu. N. Orlov and V. Zh. Sakbaev},
title = {Unitary representation of walks along random vector fields and {the~Kolmogorov{\textendash}Fokker{\textendash}Planck} equation in {a~Hilbert} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {238--257},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/}
}
TY - JOUR AU - V. M. Busovikov AU - Yu. N. Orlov AU - V. Zh. Sakbaev TI - Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 238 EP - 257 VL - 218 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/ LA - ru ID - TMF_2024_218_2_a2 ER -
%0 Journal Article %A V. M. Busovikov %A Yu. N. Orlov %A V. Zh. Sakbaev %T Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 238-257 %V 218 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/ %G ru %F TMF_2024_218_2_a2
V. M. Busovikov; Yu. N. Orlov; V. Zh. Sakbaev. Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 238-257. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/
[1] V. Zh. Sakbaev, “Flows in infinite-dimensional phase space equipped with a finitely-additive invariant measure”, Mathematics, 11:5 (2023), 1161, 49 pp. | DOI
[2] V. M. Busovikov, V. Zh. Sakbaev, “Invariant measures for Hamiltonian flows and diffusion in infinitely dimensional phase spaces”, Internat. J. Modern Phys. A, 37:20–21 (2022), 2243018, 15 pp. | MR
[3] V. A. Glazatov, V. Zh. Sakbaev, “Mery na gilbertovom prostranstve, invariantnye otnositelno gamiltonovykh potokov”, Ufimsk. matem. zhurn., 14:2 (2022), 3–22 | DOI
[4] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Fizmatlit, M., 1985 | DOI | MR
[5] R. L. Baker, “ ‘Lebesgue measure’ on $R^{\infty}$. II”, Proc. Amer. Math. Soc., 132:9 (2004), 2577–2591 | DOI | MR
[6] V. V. Kozlov, O. G. Smolyanov, “Gamiltonov podkhod k vtorichnomu kvantovaniyu”, Dokl. RAN, 483:2 (2018), 1–4 | DOI | DOI
[7] O. G. Smolyanov, N. N. Shamarov, “Kvantovanie po Shredingeru beskonechnomernykh gamiltonovykh sistem s nekvadratichnoi funktsiei Gamiltona”, Dokl. RAN. Matematika, informatika, prots. upr., 492:1 (2020), 65–69 | DOI | DOI
[8] I. V. Volovich, “Complete integrability of quantum and classical dynamical systems”, $p$-Adic Numbers, Ultrametric Analysis and Applications, 11:4 (2019), 328–334 | DOI | MR
[9] Dzh. Gof, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Randomizirovannoe kvantovanie gamiltonovykh sistem”, Dokl. RAN. Matem., inform., prots. upr., 498 (2021), 31–36 | DOI | DOI | MR | Zbl
[10] V. Zh. Sakbaev, “Usrednenie sluchainykh bluzhdanii i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov”, TMF, 191:3 (2017), 473–502 | DOI | DOI | MR
[11] V. Zh. Sakbaev, O. G. Smolyanov, “Lebesgue–Feynman measures on infinite dimensional spaces”, Internat. J. Theoret. Phys., 60:2 (2021), 546–550 | DOI | MR
[12] T. Gill, A. Kirtadze, G. Pantsulaia, A. Plichko, “Existence and uniqueness of translation invariant measures in separable Banach spaces”, Funct. Approx. Comment. Math., 50:2 (2014), 401–419 | DOI | MR
[13] D. V. Zavadskii, “Invariantnye otnositelno sdvigov mery na prostranstvakh posledovatelnostei”, Trudy MFTI, 9:4 (2017), 142–148
[14] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR
[15] Yu. N. Orlov, V. Zh. Sakbaev, E. V. Shmidt, “Operator approach to weak convergence of measures and limit theorems for random operators”, Lobachevskii J. Math., 42:10 (2021), 2413–2426 | DOI | MR
[16] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | DOI | MR | MR | Zbl
[17] A. Yu. Khrennikov, “Simplekticheskaya geometriya na beskonechnomernom fazovom prostranstve i asimptoticheskoe predstavlenie kvantovykh srednikh gaussovymi funktsionalnymi integralami”, Izv. RAN. Ser. matem., 72:1 (2008), 137–160 | DOI | DOI | MR | Zbl
[18] V. Zh. Sakbaev, “Sluchainye bluzhdaniya i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov i povorotov”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 88–118 | DOI | MR | Zbl
[19] D. V. Zavadskii, V. Zh. Sakbaev, “Diffuziya na gilbertovom prostranstve, snabzhennom translyatsionno i rotatsionno invariantnoi meroi”, Matematicheskaya fizika i prilozheniya, Sbornik statei. K 95-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Trudy MIAN, 306, MIAN, M., 2019, 112–130 | DOI | DOI | MR
[20] V. M. Busovikov, V. Zh. Sakbaev, “Prostranstva Soboleva funktsii na gilbertovom prostranstve s translyatsionno invariantnoi meroi i approksimatsii polugrupp”, Izv. RAN. Ser. matem., 84:4 (2020), 79–109 | DOI | DOI | MR
[21] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | DOI | MR | Zbl
[22] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl
[23] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Formuly Feinmana i zakon bolshikh chisel dlya sluchainykh odnoparametricheskikh polugrupp”, Trudy MIAN, 306, MIAN, M., 2019, 210–226 | DOI | DOI | MR