Unitary representation of walks along random vector fields and the~Kolmogorov--Fokker--Planck equation in a~Hilbert space
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 238-257
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Random Hamiltonian flows in an infinite-dimensional phase space is represented by random unitary groups in a Hilbert space. For this, the phase space is equipped with a measure that is invariant under a group of symplectomorphisms. The obtained representation of random flows allows applying the Chernoff averaging technique to random processes with values in the group of nonlinear operators. The properties of random unitary groups and the limit distribution for their compositions are described.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random operator, random Hamiltonian flow, invariant measure, A. Weil theorem, Gaussian random walk, Laplace–Volterra operator, Sobolev space
Mots-clés : Kolmogorov–Fokker–Planck equation.
                    
                  
                
                
                Mots-clés : Kolmogorov–Fokker–Planck equation.
@article{TMF_2024_218_2_a2,
     author = {V. M. Busovikov and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Unitary representation of walks along random vector fields and {the~Kolmogorov--Fokker--Planck} equation in {a~Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--257},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/}
}
                      
                      
                    TY - JOUR AU - V. M. Busovikov AU - Yu. N. Orlov AU - V. Zh. Sakbaev TI - Unitary representation of walks along random vector fields and the~Kolmogorov--Fokker--Planck equation in a~Hilbert space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 238 EP - 257 VL - 218 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/ LA - ru ID - TMF_2024_218_2_a2 ER -
%0 Journal Article %A V. M. Busovikov %A Yu. N. Orlov %A V. Zh. Sakbaev %T Unitary representation of walks along random vector fields and the~Kolmogorov--Fokker--Planck equation in a~Hilbert space %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 238-257 %V 218 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/ %G ru %F TMF_2024_218_2_a2
V. M. Busovikov; Yu. N. Orlov; V. Zh. Sakbaev. Unitary representation of walks along random vector fields and the~Kolmogorov--Fokker--Planck equation in a~Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 238-257. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a2/
