@article{TMF_2024_218_2_a0,
author = {A. Aksentijevi\'c and S. Aleksi\'c and S. Pilipovi\'c},
title = {The~structure of shift-invariant subspaces of {Sobolev} spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {207--222},
year = {2024},
volume = {218},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/}
}
TY - JOUR AU - A. Aksentijević AU - S. Aleksić AU - S. Pilipović TI - The structure of shift-invariant subspaces of Sobolev spaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 207 EP - 222 VL - 218 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/ LA - ru ID - TMF_2024_218_2_a0 ER -
A. Aksentijević; S. Aleksić; S. Pilipović. The structure of shift-invariant subspaces of Sobolev spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/
[1] M. Bownik, “The structure of shift-invariant subspaces of $L^2(\mathbb{R}^n)$”, J. Funct. Anal., 177:2 (2000), 282–309 | DOI | MR
[2] M. Bownik, K. A. Ross, “The structure of translation-invariant spaces on locally compact abelian groups”, J. Fourier Anal. Appl., 21:4 (2016), 849–884 | DOI | MR
[3] M. Bownik, Z. Rzeszotnik, “The spectral function of shift-invariant spaces”, Michigan Math. J., 51:2 (2003), 387–414 | DOI | MR
[4] C. Deboor, R. A. Devore, A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(\mathbb R^d)$”, J. Funct. Anal., 119:1 (1994), 37–78 | DOI | MR
[5] C. de Boor, R. A. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb R^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR
[6] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964 | MR
[7] A. Ron, Z. Shen, “Frame and stable bases for shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Canad. J. Math., 47:5 (1995), 1051–1094 | DOI | MR
[8] C. E. Shin, Q. Sun, “Stability of localized operators”, J. Funct. Anal., 256:8 (2009), 2417–2439 | DOI | MR
[9] M. S. Jakobsen, J. Lemvig, “Co-compact Gabor systems on locally compact abelian groups”, J. Fourier Anal. Appl., 22:1 (2016), 36–70 | DOI | MR
[10] M. Mortazavizadeh, R. Raisi Tousi, R. A. Kamyabi Gol, “Translation preserving operators on locally compact abelian groups”, Mediterr. J. Math., 17:4 (2020), 126, 14 pp. | DOI | MR
[11] B. Liu, R. Li, Q. Zhang, “The structure of finitely generated shift-invariant spaces in mixed Lebesgue spaces $L^{p,q}(\mathbb R^{d+1})$”, Banach J. Math. Anal., 14:1 (2020), 63–77 | DOI | MR
[12] A. Aguilera, C. Cabrelli, D. Carbajal, V. Paternostro, “Diagonalization of shift-preserving operators”, Adv. Math., 389 (2021), 107892, 32 pp. | DOI | MR
[13] A. Aguilera, C. Cabrelli, D. Carbajal, V. Paternostro, “Dynamical sampling for shift-preserving operators”, Appl. Comput. Harmon. Anal., 51 (2021), 258–274 | DOI | MR
[14] A. Aldroubi, K. Gröchenig, “Nonuniform sampling and reconstruction in shift-invariant spaces”, SIAM Rev., 43:4 (2001), 585–620 | DOI | MR
[15] A. Aldroubi, Q. Sun, W.-S. Tang, “$p$-Frames and shift invariant subspaces of $L^p$”, J. Fourier Anal. Appl., 7:1 (2001), 1–21 | DOI | MR
[16] S. Pilipović, S. Simić, “Frames for weighted shift-invariant spaces”, Mediterr. J. Math., 9:4 (2012), 897–912 | DOI | MR
[17] R. A. Adams, J. J. F. Fournier, “Sobolev Spaces”, Pure and Applied Mathematics, 140, Academic Press, New York, 2003 | MR
[18] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2, Clarendon Press, Oxford, 1997 | MR
[19] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001 | DOI
[20] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966 | MR
[21] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | MR | Zbl