The structure of shift-invariant subspaces of Sobolev spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 207-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze shift-invariant spaces $V_s$, subspaces of Sobolev spaces $H^s(\mathbb{R}^n)$, $s\in\mathbb{R}$, generated by a set of generators $\varphi_i$, $i\in I$, with $I$ at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe $V_s$ in terms of Gramians and their direct sum decompositions. We show that $f\in\mathcal D_{L^2}'(\mathbb{R}^n)$ belongs to $V_s$ if and only if its Fourier transform has the form $\hat f=\sum_{i\in I}f_ig_i$, $f_i=\hat\varphi_i\in L_s^2(\mathbb{R}^n)$, $\{\varphi_i(\,\cdot+k)\colon k\in\mathbb Z^n,\,i\in I\}$ is a frame, and $g_i=\sum_{k\in\mathbb{Z}^n}a_k^ie^{-2\pi\sqrt{-1}\,\langle\,{\cdot}\,,k\rangle}$, with $(a^i_k)_{k\in\mathbb{Z}^n}\in\ell^2(\mathbb{Z}^n)$. Moreover, connecting two different approaches to shift-invariant spaces $V_s$ and $\mathcal V^2_s$, $s>0$, under the assumption that a finite number of generators belongs to $H^s\cap L^2_s$, we give the characterization of elements in $V_s$ through the expansions with coefficients in $\ell_s^2(\mathbb{Z}^n)$. The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of $\mathcal S(\mathbb R^n)$. We then show that $\bigcap_{s>0}V_s$ is the space consisting of functions whose Fourier transforms equal products of functions in $\mathcal S(\mathbb R^n)$ and periodic smooth functions. The appropriate assertion is obtained for $\bigcup_{s>0}V_{-s}$.
Keywords: Sobolev space, shift-invariant space, range function, frame, Bessel family.
@article{TMF_2024_218_2_a0,
     author = {A. Aksentijevi\'c and S. Aleksi\'c and S. Pilipovi\'c},
     title = {The~structure of shift-invariant subspaces of {Sobolev} spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--222},
     year = {2024},
     volume = {218},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/}
}
TY  - JOUR
AU  - A. Aksentijević
AU  - S. Aleksić
AU  - S. Pilipović
TI  - The structure of shift-invariant subspaces of Sobolev spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 207
EP  - 222
VL  - 218
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/
LA  - ru
ID  - TMF_2024_218_2_a0
ER  - 
%0 Journal Article
%A A. Aksentijević
%A S. Aleksić
%A S. Pilipović
%T The structure of shift-invariant subspaces of Sobolev spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 207-222
%V 218
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/
%G ru
%F TMF_2024_218_2_a0
A. Aksentijević; S. Aleksić; S. Pilipović. The structure of shift-invariant subspaces of Sobolev spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/

[1] M. Bownik, “The structure of shift-invariant subspaces of $L^2(\mathbb{R}^n)$”, J. Funct. Anal., 177:2 (2000), 282–309 | DOI | MR

[2] M. Bownik, K. A. Ross, “The structure of translation-invariant spaces on locally compact abelian groups”, J. Fourier Anal. Appl., 21:4 (2016), 849–884 | DOI | MR

[3] M. Bownik, Z. Rzeszotnik, “The spectral function of shift-invariant spaces”, Michigan Math. J., 51:2 (2003), 387–414 | DOI | MR

[4] C. Deboor, R. A. Devore, A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(\mathbb R^d)$”, J. Funct. Anal., 119:1 (1994), 37–78 | DOI | MR

[5] C. de Boor, R. A. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb R^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR

[6] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964 | MR

[7] A. Ron, Z. Shen, “Frame and stable bases for shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Canad. J. Math., 47:5 (1995), 1051–1094 | DOI | MR

[8] C. E. Shin, Q. Sun, “Stability of localized operators”, J. Funct. Anal., 256:8 (2009), 2417–2439 | DOI | MR

[9] M. S. Jakobsen, J. Lemvig, “Co-compact Gabor systems on locally compact abelian groups”, J. Fourier Anal. Appl., 22:1 (2016), 36–70 | DOI | MR

[10] M. Mortazavizadeh, R. Raisi Tousi, R. A. Kamyabi Gol, “Translation preserving operators on locally compact abelian groups”, Mediterr. J. Math., 17:4 (2020), 126, 14 pp. | DOI | MR

[11] B. Liu, R. Li, Q. Zhang, “The structure of finitely generated shift-invariant spaces in mixed Lebesgue spaces $L^{p,q}(\mathbb R^{d+1})$”, Banach J. Math. Anal., 14:1 (2020), 63–77 | DOI | MR

[12] A. Aguilera, C. Cabrelli, D. Carbajal, V. Paternostro, “Diagonalization of shift-preserving operators”, Adv. Math., 389 (2021), 107892, 32 pp. | DOI | MR

[13] A. Aguilera, C. Cabrelli, D. Carbajal, V. Paternostro, “Dynamical sampling for shift-preserving operators”, Appl. Comput. Harmon. Anal., 51 (2021), 258–274 | DOI | MR

[14] A. Aldroubi, K. Gröchenig, “Nonuniform sampling and reconstruction in shift-invariant spaces”, SIAM Rev., 43:4 (2001), 585–620 | DOI | MR

[15] A. Aldroubi, Q. Sun, W.-S. Tang, “$p$-Frames and shift invariant subspaces of $L^p$”, J. Fourier Anal. Appl., 7:1 (2001), 1–21 | DOI | MR

[16] S. Pilipović, S. Simić, “Frames for weighted shift-invariant spaces”, Mediterr. J. Math., 9:4 (2012), 897–912 | DOI | MR

[17] R. A. Adams, J. J. F. Fournier, “Sobolev Spaces”, Pure and Applied Mathematics, 140, Academic Press, New York, 2003 | MR

[18] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2, Clarendon Press, Oxford, 1997 | MR

[19] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001 | DOI

[20] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966 | MR

[21] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | MR | Zbl