The~structure of shift-invariant subspaces of Sobolev spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 207-222

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze shift-invariant spaces $V_s$, subspaces of Sobolev spaces $H^s(\mathbb{R}^n)$, $s\in\mathbb{R}$, generated by a set of generators $\varphi_i$, $i\in I$, with $I$ at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe $V_s$ in terms of Gramians and their direct sum decompositions. We show that $f\in\mathcal D_{L^2}'(\mathbb{R}^n)$ belongs to $V_s$ if and only if its Fourier transform has the form $\hat f=\sum_{i\in I}f_ig_i$, $f_i=\hat\varphi_i\in L_s^2(\mathbb{R}^n)$, $\{\varphi_i(\,\cdot+k)\colon k\in\mathbb Z^n,\,i\in I\}$ is a frame, and $g_i=\sum_{k\in\mathbb{Z}^n}a_k^ie^{-2\pi\sqrt{-1}\,\langle\,{\cdot}\,,k\rangle}$, with $(a^i_k)_{k\in\mathbb{Z}^n}\in\ell^2(\mathbb{Z}^n)$. Moreover, connecting two different approaches to shift-invariant spaces $V_s$ and $\mathcal V^2_s$, $s>0$, under the assumption that a finite number of generators belongs to $H^s\cap L^2_s$, we give the characterization of elements in $V_s$ through the expansions with coefficients in $\ell_s^2(\mathbb{Z}^n)$. The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of $\mathcal S(\mathbb R^n)$. We then show that $\bigcap_{s>0}V_s$ is the space consisting of functions whose Fourier transforms equal products of functions in $\mathcal S(\mathbb R^n)$ and periodic smooth functions. The appropriate assertion is obtained for $\bigcup_{s>0}V_{-s}$.
Keywords: Sobolev space, shift-invariant space, range function, frame, Bessel family.
@article{TMF_2024_218_2_a0,
     author = {A. Aksentijevi\'c and S. Aleksi\'c and S. Pilipovi\'c},
     title = {The~structure of shift-invariant subspaces of {Sobolev} spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--222},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/}
}
TY  - JOUR
AU  - A. Aksentijević
AU  - S. Aleksić
AU  - S. Pilipović
TI  - The~structure of shift-invariant subspaces of Sobolev spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 207
EP  - 222
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/
LA  - ru
ID  - TMF_2024_218_2_a0
ER  - 
%0 Journal Article
%A A. Aksentijević
%A S. Aleksić
%A S. Pilipović
%T The~structure of shift-invariant subspaces of Sobolev spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 207-222
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/
%G ru
%F TMF_2024_218_2_a0
A. Aksentijević; S. Aleksić; S. Pilipović. The~structure of shift-invariant subspaces of Sobolev spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/TMF_2024_218_2_a0/