On qualitative properties of the solution of a boundary value
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 168-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a system of nonlinear integral equations on the semiaxis, we study a boundary value problem whose matrix kernel has unit spectral radius. This boundary value problem has applications in various areas of physics and biology. In particular, such problems arise in the dynamical theory of $p$-adic strings for the scalar field of tachyons, in the mathematical theory of spread of epidemic diseases, in the kinetic theory of gases, and in the theory of radiative transfer. The questions of the existence, absence, and uniqueness of a nontrivial solution of this boundary value problem are discussed. In particular, it is proved that a boundary value problem with a zero boundary conditions at infinity has only a trivial solution in the class of nonnegative and bounded functions. It is also proved that if at least one of the values at infinity is positive, then this problem has a convex nontrivial nonnegative bounded and continuous solution. At the end of this paper, examples of the matrix kernel and nonlinearity are provided that satisfy all the conditions of the proved theorems.
Keywords: convexity, monotonicity, bounded solution, spectral radius, uniqueness of solution, iterations.
@article{TMF_2024_218_1_a9,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On qualitative properties of the solution of a~boundary value},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {168--186},
     year = {2024},
     volume = {218},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a9/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On qualitative properties of the solution of a boundary value
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 168
EP  - 186
VL  - 218
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a9/
LA  - ru
ID  - TMF_2024_218_1_a9
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On qualitative properties of the solution of a boundary value
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 168-186
%V 218
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a9/
%G ru
%F TMF_2024_218_1_a9
Kh. A. Khachatryan; H. S. Petrosyan. On qualitative properties of the solution of a boundary value. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 168-186. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a9/

[1] P. Lancaster, M. Tismenetsky, The Theory of Matrices: With Applications, Academic Press, Orlando, FL, 1985 | MR

[2] V. S. Vladimirov, Ya. I. Volovich, “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | DOI | DOI | MR | Zbl

[3] V. S. Vladimirov, “O nelineinykh uravneniyakh $p$-adicheskikh otkrytykh, zamknutykh i otkryto-zamknutykh strun”, TMF, 149:3 (2006), 354–367 | DOI | DOI | MR | Zbl

[4] V. S. Vladimirov, “The equation of the $p$-adic closed strings for the scalar tachyon field”, Sci. China Ser. A, 51:4 (2008), 754–764 | DOI | MR

[5] V. S. Vladimirov, “On the equations for $p$-adic closed and open strings”, $p$-Adic Num. Ultrametr. Anal. Appl., 1:1 (2009), 79–87 | DOI | MR

[6] V. S. Vladimirov, “O resheniyakh $p$-adicheskikh strunnykh uravnenii”, TMF, 167:2 (2011), 163–170 | DOI | DOI | MR

[7] V. S. Vladimirov, “K voprosu necuschestvovaniya reshenii uravnenii $p$-adicheskikh strun”, TMF, 174:2 (2013), 208–215 | DOI | DOI | MR | Zbl

[8] I. Ya. Aref'eva, B. G. Dragović, I. V. Volovich, “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[9] I. Ja. Aref'eva, A. S. Koshelev, L. V. Joukovskaya, “Time evolution in superstring field theory on non-BPS brane 1. Rolling tachyon and energy-momentum conservation”, JHEP, 9 (2003), 012, 15 pp., arXiv: hep-th/0301137 | DOI

[10] I. Ya. Aref'eva, I. V. Volovich, “Cosmological daemon”, JHEP, 8 (2011), 102, 32 pp., arXiv: 1103.0273 | DOI

[11] I. Ya. Aref'eva, “Puzzles with tachyon in SSFT and cosmological applications”, Prog. Theor. Phys. Suppl., 188 (2011), 29–40, arXiv: 1101.5338 | DOI

[12] V. V. Ter-Avetisyan, “Uravnenie perenosa v sluchae tochechnogo istochnika v tsentre shara”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1160–1165

[13] N. B. Engibaryan, “Perenos izlucheniya v sfericheski-simmetrichnoi srede”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1730–1739 | MR | Zbl

[14] C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer, New York, 1988 | DOI | MR

[15] A. Kh. Khachatryan, Kh. A. Khachatryan, “O razreshimosti nekotorykh nelineinykh integralnykh uravnenii v zadachakh rasprostraneniya epidemii”, Matematicheskaya fizika i prilozheniya, Sbornik statei. K 95-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Trudy MIAN, 306, MIAN, M., 2019, 287–303 | DOI | DOI | MR

[16] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR

[17] Kh. A. Khachatryan, Ts. E. Terdzhyan, M. O. Avetisyan, “Odnoparametricheskoe semeistvo ogranichennykh reshenii dlya odnoi sistemy nelineinykh integralnykh uravnenii na vsei pryamoi”, Izv. NAN Armenii. Matematika, 53:4 (2018), 72–86 | DOI | MR | Zbl

[18] Kh. A. Khachatryan, “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 19:2 (2019), 164–181 | DOI | MR

[19] A. S. Petrosyan, Ts. E. Terdzhyan, Kh. A. Khachatryan, “Edinstvennost resheniya odnoi sistemy integralnykh uravnenii na poluosi s vypukloi nelineinostyu”, Matem. tr., 23:2 (2020), 187–203 | DOI

[20] Kh. A. Khachatryan, A. S. Petrosyan, “O razreshimosti odnoi sistemy singulyarnykh integralnykh uravnenii s vypukloi nelineinostyu na polozhitelnoi polupryamoi”, Izv. vuzov. Matem., 2021, no. 1, 31–51 | DOI | DOI

[21] Kh. A. Khachatryan, “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Ser. matem., 82:2 (2018), 172–193 | DOI | DOI | MR

[22] L. V. Zhukovskaya, “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, TMF, 146:3 (2006), 402–409 | DOI | DOI | MR

[23] Kh. A. Khachatryan, “O razreshimosti nekotorykh nelineinykh kraevykh zadach dlya singulyarnykh integralnykh uravnenii tipa svertki”, Tr. MMO, 81, no. 1, MTsNMO, M., 2020, 3–40 | DOI

[24] L. G. Arabadzhyan, “Resheniya odnogo integralnogo uravneniya tipa Gammershteina”, Izv. NAN Armenii. Matematika, 32:1 (1997), 21–28 | MR

[25] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[26] A N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[27] G. G. Gevorkyan, N. B. Engibaryan, “Novye teoremy dlya integralnogo uravneniya vosstanovleniya”, Izv. NAN Armenii. Matematika, 32:1 (1997), 5–20 | MR

[28] A. Kh. Khachatryan, Kh. A. Khachatryan, “Ob odnoi sisteme integralnykh uravnenii na vsei pryamoi s vypukloi i monotonnoi nelineinostyu”, Izvestiya NAN Armenii. Matematika, 57:5 (2022), 65–80 | DOI | DOI