Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 124-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a second-order quasilinear elliptic equation with an integrable right-hand side. We formulate constraints on the structure of the equation in terms of a generalized $N$-function. We prove the existence of an entropic solution of the Dirichlet problem in nonreflexive Musielak–Orlicz–Sobolev spaces in an arbitrary unbounded strictly Lipschitz domain.
Keywords: quasilinear elliptic equation, unbounded domain, Musielak–Orlicz space.
Mots-clés : entropic solution, existence of solution
@article{TMF_2024_218_1_a7,
     author = {L. M. Kozhevnikova},
     title = {Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--148},
     year = {2024},
     volume = {218},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a7/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 124
EP  - 148
VL  - 218
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a7/
LA  - ru
ID  - TMF_2024_218_1_a7
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 124-148
%V 218
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a7/
%G ru
%F TMF_2024_218_1_a7
L. M. Kozhevnikova. Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 124-148. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a7/

[1] P. Gwiazda, I. Skrzypczaka, A. Zatorska-Goldstein, “Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space”, Differ. Equ., 264:1 (2018), 341–377 | DOI

[2] A. Denkowska, P. Gwiazda, P. Kalita, “On renormalized solutions to elliptic inclusions with nonstandard growth”, Calc. Var. Partial Differ. Equ., 60:1 (2021), 21, 52 pp. | DOI | MR

[3] M. Ait Khellou, A. Benkirane, “Renormalized solution for nonlinear elliptic problems with lower order terms and $L^1$ data in Musielak–Orlicz spaces”, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 43:2 (2016), 164–187 | MR

[4] M. S. B. Elemine Vall, A. Ahmed, A. Touzani, A. Benkirane, “Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data”, Bol. Soc. Paran. Mat. (3), 36:1 (2018), 125–150 | DOI | MR

[5] R. Elarabi, M. Rhoudaf, H. Sabiki, “Entropy solution for a nonlinear elliptic problem with lower order term in Musielak–Orlicz spaces”, Ricerche Mat., 67:2 (2018), 549–579 | DOI | MR

[6] M. Ait Khelloul, S. M. Douiri, Y. El Hadfi, “Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the Log-H$\ddot{o}$lder continuity condition”, Mediterr. J. Math., 17:1 (2020), 33, 18 pp. | DOI | MR

[7] A. Talha, A. Benkirane, “Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces”, Monatsh. Math., 186:4 (2018), 745–776 | DOI | MR

[8] Y. Li, F. Yao, S. Zhou, “Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak–Orlicz spaces”, Nonlinear Anal. Real World Appl., 61 (2021), 103330, 20 pp. | MR

[9] L. M. Kozhevnikova, “Entropiinye i renormalizovannye resheniya anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei”, Matem. sb., 210:3 (2019), 131–161 | DOI | DOI | MR

[10] L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367 | DOI | MR

[11] L. M. Kozhevnikova, “On solutions of elliptic equations with variable exponents and measure data in $R^n$”, Differential Equations on Manifolds and Mathematical Physics, Dedicated to the Memory of Boris Sternin, Trends in Mathematics, eds. V. M. Manuilov, A. S. Mishchenko, V. E. Nazaikinskii, B.-W. Schulze, W. Zhang, Birkhäuser, Springer, 2021, 221–239 | DOI | MR

[12] A. P. Kashnikova, L. M. Kozhevnikova, “Suschestvovanie reshenii nelineinykh ellipticheskikh uravnenii s dannymi v vide mery v prostranstvakh Muzilaka–Orlicha”, Matem. sb., 213:4 (2022), 38–73 | DOI | DOI | MR

[13] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983 | DOI | MR

[14] I. Chlebicka, “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces”, Nonlinear Anal., 175 (2018), 1–27 | DOI | MR

[15] Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, “Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces”, J. Funct. Anal., 275:9 (2018), 2538–2571 | DOI | MR

[16] L. M. Kozhevnikova, “On solutions of nonlinear elliptic equations with $L_1$-data in unbounded domains”, Lobachevskii J. Math., 44:5 (2023), 1879–1901 | DOI | MR

[17] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR

[18] A. Benkirane, M. Sidi El Vally, “An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 57–75 | DOI | MR

[19] I. Chlebicka, “Measure data elliptic problems with generalized Orlicz growth”, Proc. Roy. Soc. Edinburgh Sect. A, 153:2 (2023), 588–618 | DOI | MR

[20] A. Benkirane, M. Sidi El Vally, “Variational inequalities in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 21:5 (2014), 787–811 | DOI | MR