On the combination of Lebesgue and Riemann integrals in theory of convolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 80-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the example of scalar and vector Wiener–Hopf equations, we consider two methods for combining the options for the Riemann integral and Lebesgue functional spaces in problems of studying and solving integral convolution equations. The method of nonlinear factorization equations and the kernel averaging method are used. A generalization of the direct Riemann integrability is introduced and applied.
Keywords: improper direct Riemann integrability, Wiener–Hopf equation, nonlinear factorization equation, kernel averaging method.
@article{TMF_2024_218_1_a4,
     author = {N. B. Engibaryan},
     title = {On the combination of {Lebesgue} and {Riemann} integrals in theory of convolution equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {80--87},
     year = {2024},
     volume = {218},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the combination of Lebesgue and Riemann integrals in theory of convolution equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 80
EP  - 87
VL  - 218
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/
LA  - ru
ID  - TMF_2024_218_1_a4
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the combination of Lebesgue and Riemann integrals in theory of convolution equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 80-87
%V 218
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/
%G ru
%F TMF_2024_218_1_a4
N. B. Engibaryan. On the combination of Lebesgue and Riemann integrals in theory of convolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 80-87. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/

[1] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158 | MR

[2] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl

[3] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5(83) (1958), 3–120 | MR | Zbl | Zbl

[4] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[5] F. D. Gakhov, Yu. I. Cherskii, Uravneniya tipa svertki, Nauka, M., 1978 | MR

[6] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Matem. anal., 22, VINITI, M., 1984, 175–244 | DOI | MR | Zbl

[7] A. G. Barsegyan, N. B. Engibaryan, “Priblizhennoe reshenie integralnykh i diskretnykh uravnenii Vinera–Khopfa”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 836–845 | DOI | DOI | MR | Zbl

[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR | MR | Zbl

[9] S. Asmussen, Applied Probability and Queues, Stochastic Modelling and Applied Probability, 51, Springer, New York, 2003 | DOI | MR