@article{TMF_2024_218_1_a4,
author = {N. B. Engibaryan},
title = {On the combination of {Lebesgue} and {Riemann} integrals in theory of convolution equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {80--87},
year = {2024},
volume = {218},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/}
}
TY - JOUR AU - N. B. Engibaryan TI - On the combination of Lebesgue and Riemann integrals in theory of convolution equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 80 EP - 87 VL - 218 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/ LA - ru ID - TMF_2024_218_1_a4 ER -
N. B. Engibaryan. On the combination of Lebesgue and Riemann integrals in theory of convolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 80-87. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a4/
[1] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158 | MR
[2] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl
[3] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5(83) (1958), 3–120 | MR | Zbl | Zbl
[4] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979
[5] F. D. Gakhov, Yu. I. Cherskii, Uravneniya tipa svertki, Nauka, M., 1978 | MR
[6] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Matem. anal., 22, VINITI, M., 1984, 175–244 | DOI | MR | Zbl
[7] A. G. Barsegyan, N. B. Engibaryan, “Priblizhennoe reshenie integralnykh i diskretnykh uravnenii Vinera–Khopfa”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 836–845 | DOI | DOI | MR | Zbl
[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR | MR | Zbl
[9] S. Asmussen, Applied Probability and Queues, Stochastic Modelling and Applied Probability, 51, Springer, New York, 2003 | DOI | MR