Recent progress in the theory of functions of several complex variables and complex geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 187-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a survey on recent progress on converses of $L^2$ existence theorem and $L^2$ extension theorem which are two main parts in $L^2$-theory, and their applications in getting criteria of Griffiths positivity and characterizations of Nakano positivity of (singular) Hermitian metrics of holomorphic vector bundles, as well as the strong openness property and stability property of multiplier submodule sheaves associated to singular Nakano semipositive Hermitian metrics on holomorphic vector bundles.
Keywords: multiplier ideal/submodule sheaf, strong openness, stability, singular Nakano semipositive metric, converse $L^2$ theory, holomorphic vector bundles.
@article{TMF_2024_218_1_a10,
     author = {Zhou Xiang Yu},
     title = {Recent progress in the theory of functions of several complex variables and complex geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {187--203},
     year = {2024},
     volume = {218},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a10/}
}
TY  - JOUR
AU  - Zhou Xiang Yu
TI  - Recent progress in the theory of functions of several complex variables and complex geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 187
EP  - 203
VL  - 218
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a10/
LA  - ru
ID  - TMF_2024_218_1_a10
ER  - 
%0 Journal Article
%A Zhou Xiang Yu
%T Recent progress in the theory of functions of several complex variables and complex geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 187-203
%V 218
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a10/
%G ru
%F TMF_2024_218_1_a10
Zhou Xiang Yu. Recent progress in the theory of functions of several complex variables and complex geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 187-203. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a10/

[1] X. Zhou, “On matrix Reinhardt domains”, Math. Ann., 287:1 (1990), 35–46 | DOI | MR

[2] V. S. Vladimirov, “Nikolai Nikolaevich Bogolyubov – matematik Bozhei milostyu”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 119–143 | DOI | MR

[3] Sch. Chzhou, “Dokazatelstvo gipotezy o rasshirennoi trube buduschego”, Izv. RAN. Ser. matem., 62:1 (1998), 211–224 | DOI | DOI | MR | Zbl

[4] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[5] A. M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. Math., 132:3 (1990), 549–596 | DOI | MR

[6] J.-P. Demailly, “A numerical criterion for very ample line bundles”, J. Differential Geom., 37:2 (1993), 323–374 | DOI | MR

[7] J.-P. Demailly, “Multiplier ideal sheaves and analytic methods in algebraic geometry”, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Abdus Salam International Centre for Theoretical Physics, Trieste, 25 April – 12 May, 2000), ICTP Lecture Notes, 6, eds. J. P. Demailly, L. Göttsche, R. Lazarsfeld, ICTP, Trieste, 2001, 1–148 | MR

[8] Y.-T. Siu, “Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles”, Finite or Infinite Dimensional Complex Analysis and Applications, Advances in Complex Analysis and Its Applications, 2, eds. H. S. Le, W. Tutschke, C. C. Yang, Springer, New York, 2004, 45–83 | DOI | MR

[9] J.-P. Demailly, J. Kollár, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Sup. Sér. 4, 34:4 (2001), 525–556 | DOI | MR

[10] B. Berndtsson, The openness conjecture for plurisubharmonic functions, arXiv: ; “The openness conjecture and complex Brunn–Minkowski inequalities”, Complex Geometry and Dynamics, Abel Symposia, 10, eds. J. E. Fornæss, M. Irgens, E. Fornæss Wold, Springer, Cham, 2015, 29–44 1305.5781 | DOI

[11] C. Farve, M. Jonsson, “Valuations and multiplier ideals”, J. Amer. Math. Soc., 18:3 (2005), 655–684 | DOI | MR

[12] C. Farve, M. Jonsson, “Valuative analysis of planar plurisubharmonic functions”, Invent. Math., 162:2 (2005), 271–311 | DOI | MR

[13] M. Jonsson, M. Mustaţă, “Valuations and asymptotic invariants for sequences of ideals”, Ann. Inst. Fourier (Grenoble), 62:6 (2012), 2145–2209 | DOI | MR

[14] Q. Guan, X. Zhou, “A proof of Demailly's strong openness conjecture”, Ann. Math., 182:2 (2015), 605–616 | DOI | MR

[15] S. Boucksom, C. Favre, M. Jonsson, “Valuations and plurisubharmonic singularities”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 449–494 | DOI | MR

[16] J. Cao, “Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds”, Compos. Math., 150:11 (2014), 1869–1902 | DOI | MR

[17] J.-P. Demailly, Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012 | MR

[18] J.-P. Demailly, L. Ein, R. Lazarsfeld, “A subadditivity property of multiplier ideals”, Michigan Math. J., 48:1 (2000), 137–156 | DOI | MR

[19] R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 49, Positivity for Vector Bundles, and Multiplier Ideals, Springer, Berlin, 2004 | DOI | MR

[20] T. Darvas, K. Zhang, Twisted Käher–Einstein metrics in big classes, arXiv: 2208.08324

[21] X. Chen, S. Donaldson, S. Sun, “Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities”, J. Amer. Math. Soc., 28:1 (2015), 183–197 ; “Kähler–Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$”, 199–234 ; “Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof”, 235–278 | DOI | MR | DOI | MR | DOI | MR

[22] G. Tian, “K-stability and Kähler–Einstein metrics”, Comm. Pure Appl. Math., 68:7 (2015), 1085–1156 | DOI | MR

[23] Q. Guan, Z. Li, X. Zhou, “Stability of multiplier ideal sheaves”, Chinese Ann. Math. Ser. B, 43:5 (2022), 819–832 | DOI | MR

[24] Q. Guan, X. Zhou, “Effectiveness of Demailly's strong openness conjecture and related problems”, Invent. Math., 202:2 (2015), 635–676 | DOI | MR

[25] P. H. Hiep, “Continuity properties of certain weighted log canonical thresholds”, C. R. Math. Acad. Sci. Paris, 355:1 (2017), 34–39 | DOI | MR

[26] L. Hörmander, “$L^2$-estimates and existence theorems for the $\bar\partial$ operator”, Acta. Math., 113 (1965), 89–152 | DOI | MR

[27] J.-P. Demailly, Complex Analytic and Differential Geometry, Université de Grenoble I, Saint-Martin d'Hères, France, 1997

[28] T. Ohsawa, K. Takegoshi, “On the extension of $L^2$ holomorphic functions”, Math. Z., 195:2 (1987), 197–204 | DOI | MR

[29] X. Zhou, L. Zhu, “Optimal $L^2$ extension of sections from subvarieties in weakly pseudoconvex manifolds”, Pacific J. Math., 309:2 (2020), 475–510 | DOI | MR

[30] Q. Guan, X. Zhou, “Optimal constant problem in the $L^2$ extension theorem”, C. R. Math. Acad. Sci. Paris, 350:15–16 (2012), 753–756 | DOI | MR

[31] Q. Guan, X. Zhou, “A solution of an $L^2$ extension problem with an optimal estimate and applications”, Ann. Math., 181:3 (2015), 1139–1208 | DOI | MR

[32] Q. Guan, X. Zhou, “Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa”, Sci. China Math., 58:1 (2015), 35–59 | DOI | MR

[33] B. Berndtsson, “Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains”, Ann. Inst. Fourier (Grenoble), 56:6 (2006), 1633–1662 | DOI | MR

[34] B. Berndtsson, “Curvature of vector bundles associated to holomorphic fibrations”, Ann. Math., 169:2 (2009), 531–560 | DOI | MR

[35] B. Berndtsson, M. Păun, “Bergman kernels and the pseudoeffectivity of relative canonical bundles”, Duke Math. J., 145:2 (2008), 341–378 | DOI | MR

[36] C. Hacon, M. Popa, C. Schnell, “Algebraic fiber spaces over abelian varieties: Around a recent theorem by Cao and Păun”, Local and Global Methods in Algebraic Geometry, Contemporary Mathematic, 712, AMS, Providence, RI, 2018, 143–195 | DOI | MR

[37] F. Deng, Z. Wang, L. Zhang, X. Zhou, New characterization of plurisubharmonic functions and positivity of direct image sheaves, accepted by Amer. J. Math., arXiv: 1809.10371

[38] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom., 1:3 (1992), 361–409 | MR

[39] M. Păun, S. Takayama, “Positivity of twisted relative pluricanonical bundles and their direct images”, J. Algebraic Geom., 27:2 (2018), 211–272 | DOI | MR

[40] Z. Liu, H. Yang, X. Zhou, On the multiplier submodule sheaves associated to singular Nakano semi-positive metrics, arXiv: 2111.13452

[41] F. Deng, J. Ning, Z. Wang, X. Zhou, “Positivity of holomorphic vector bundles in terms of $L^p$-estimates of $\bar\partial$”, Math. Ann., 385:1–2 (2023), 575–607 | DOI | MR

[42] F. Deng, J. Ning, Z. Wang, “Characterizations of plurisubharmonic functions”, Sci. China Math., 64:9 (2021), 1959–1970 | DOI | MR

[43] B. Berndtsson, “Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions”, Math. Ann., 312:4 (1998), 785–792 | DOI | MR

[44] G. Hosono, T. Inayama, “A converse of Hörmander's $L^2$-estimate and new positivity notions for vector bundles”, Sci. China Math., 64:8 (2021), 1745–1756 | DOI | MR

[45] L. Lempert, “Modules of square integrable holomorphic germs”, Analysis Meets Geometry, Trends in Mathematicsy, eds. M. Andersson, J. Boman, C. Kiselman, P. Kurasov, R. Sigurdsson, Birkhäuser, Cham, 2017, 311–333 | DOI | MR

[46] T. Inayama, “Nakano positivity of singular Hermitian metrics and vanishing theorems of Demailly–Nadel–Nakano type”, Algebr. Geom., 9:1 (2022), 69–92 | DOI | MR