@article{TMF_2024_218_1_a1,
author = {I. A. Bogaevsky and S. Yu. Dobrokhotov and A. A. Tolchennikov},
title = {Arnold {Lagrangian} singularity in the asymptotics of the solution of a model two-dimensional {Helmholtz} equation with a localized right-hand side},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--47},
year = {2024},
volume = {218},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/}
}
TY - JOUR AU - I. A. Bogaevsky AU - S. Yu. Dobrokhotov AU - A. A. Tolchennikov TI - Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 23 EP - 47 VL - 218 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/ LA - ru ID - TMF_2024_218_1_a1 ER -
%0 Journal Article %A I. A. Bogaevsky %A S. Yu. Dobrokhotov %A A. A. Tolchennikov %T Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 23-47 %V 218 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/ %G ru %F TMF_2024_218_1_a1
I. A. Bogaevsky; S. Yu. Dobrokhotov; A. A. Tolchennikov. Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 23-47. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/
[1] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i uravneniya s lokalizovannoi pravoi chastyu”, Dokl. RAN. Matem. fizika, 475:6 (2017), 624–628 | DOI | MR
[2] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Lagranzhevy mnogoobraziya i konstruktsiya asimptotik dlya (psevdo)differentsialnykh uravnenii s lokalizovannymi pravymi chastyami”, TMF, 214:1 (2023), 3–29 | DOI
[3] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107):4 (1964), 576–630 | MR | Zbl
[4] V. M. Babich, “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 949–951 | Zbl
[5] V. V. Kucherenko, “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $[\Delta+k^2n^2(x)]u=0$”, Trudy MIEM, 25 (1972), 32–55
[6] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | MR | Zbl | Zbl
[7] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Ucheb. posobie, Izd-vo Mosk. un-ta, M., 1993 | MR
[8] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | DOI | MR | MR | Zbl
[9] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI | MR
[10] S. Yu. Dobrokhotov, A. A. Tolchennikov, “Keplerian trajectories and an asymptotic solution of the Schrodinger equation with repulsive Coulomb potential and localized right-hand side”, Russ. J. Math. Phys., 29 (2022), 456–466 | DOI | MR
[11] S. Yu. Dobrokhotov, A. A. Tolchennikov, “Solution of the two-dimensional Dirac equation with a linear potential and a localized initial condition”, Russ. J. Math. Phys., 26:2 (2019), 139–151 | DOI | MR
[12] I. A. Bogaevskii, “Fundamentalnoe reshenie statsionarnogo uravneniya Diraka s lineinym potentsialom”, TMF, 205:3 (2020), 349–367 | DOI | DOI | MR
[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl
[14] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR
[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[16] C. Malyshev, “Nicholson-type integral for the product of two parabolic cylinder functions $D_\nu(x) D_\nu (-x)$ at $\Re\, \nu 0$”, Integral Transforms Spec. Funct., 14:2 (2003), 139–148 | DOI | MR
[17] M. L. Glasser, “An integral representation for the product of two parabolic cylinder functions having unrelated arguments”, Integral Transforms Spec. Funct., 26:10 (2015), 825–828 | DOI | MR
[18] D. Veestraeten, “An integral representation for the product of parabolic cylinder functions”, Integral Transforms Spec. Funct., 28:1 (2017), 15–21 | DOI | MR