Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 23-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model Helmholtz equation with a localized right-hand side is considered. When writing asymptotics of a solution satisfying the limit absorption principle, a Lagrangian surface naturally appears that has a logarithmic singularity at one point. Because of this singularity, the solution is localized not only in a neighborhood of the projection of the Lagrangian surface onto the coordinate space but also in a neighborhood of a certain ray “escaping” from the Lagrangian surface and going into the region forbidden in the classical approximation.
Keywords: semiclassical asymptotics, canonical Maslov operator, Lagrangian surfaces.
@article{TMF_2024_218_1_a1,
     author = {I. A. Bogaevsky and S. Yu. Dobrokhotov and A. A. Tolchennikov},
     title = {Arnold {Lagrangian} singularity in the asymptotics of the solution of a model two-dimensional {Helmholtz} equation with a localized right-hand side},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--47},
     year = {2024},
     volume = {218},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
AU  - S. Yu. Dobrokhotov
AU  - A. A. Tolchennikov
TI  - Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 23
EP  - 47
VL  - 218
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/
LA  - ru
ID  - TMF_2024_218_1_a1
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%A S. Yu. Dobrokhotov
%A A. A. Tolchennikov
%T Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 23-47
%V 218
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/
%G ru
%F TMF_2024_218_1_a1
I. A. Bogaevsky; S. Yu. Dobrokhotov; A. A. Tolchennikov. Arnold Lagrangian singularity in the asymptotics of the solution of a model two-dimensional Helmholtz equation with a localized right-hand side. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 23-47. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a1/

[1] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i uravneniya s lokalizovannoi pravoi chastyu”, Dokl. RAN. Matem. fizika, 475:6 (2017), 624–628 | DOI | MR

[2] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Lagranzhevy mnogoobraziya i konstruktsiya asimptotik dlya (psevdo)differentsialnykh uravnenii s lokalizovannymi pravymi chastyami”, TMF, 214:1 (2023), 3–29 | DOI

[3] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107):4 (1964), 576–630 | MR | Zbl

[4] V. M. Babich, “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 949–951 | Zbl

[5] V. V. Kucherenko, “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $[\Delta+k^2n^2(x)]u=0$”, Trudy MIEM, 25 (1972), 32–55

[6] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | MR | Zbl | Zbl

[7] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Ucheb. posobie, Izd-vo Mosk. un-ta, M., 1993 | MR

[8] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | DOI | MR | MR | Zbl

[9] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI | MR

[10] S. Yu. Dobrokhotov, A. A. Tolchennikov, “Keplerian trajectories and an asymptotic solution of the Schrodinger equation with repulsive Coulomb potential and localized right-hand side”, Russ. J. Math. Phys., 29 (2022), 456–466 | DOI | MR

[11] S. Yu. Dobrokhotov, A. A. Tolchennikov, “Solution of the two-dimensional Dirac equation with a linear potential and a localized initial condition”, Russ. J. Math. Phys., 26:2 (2019), 139–151 | DOI | MR

[12] I. A. Bogaevskii, “Fundamentalnoe reshenie statsionarnogo uravneniya Diraka s lineinym potentsialom”, TMF, 205:3 (2020), 349–367 | DOI | DOI | MR

[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl

[14] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[16] C. Malyshev, “Nicholson-type integral for the product of two parabolic cylinder functions $D_\nu(x) D_\nu (-x)$ at $\Re\, \nu 0$”, Integral Transforms Spec. Funct., 14:2 (2003), 139–148 | DOI | MR

[17] M. L. Glasser, “An integral representation for the product of two parabolic cylinder functions having unrelated arguments”, Integral Transforms Spec. Funct., 26:10 (2015), 825–828 | DOI | MR

[18] D. Veestraeten, “An integral representation for the product of parabolic cylinder functions”, Integral Transforms Spec. Funct., 28:1 (2017), 15–21 | DOI | MR