Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky--Meyers estimate
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 3-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the higher integrability of the gradient of solutions of the Zaremba problem in a bounded strongly Lipschitz domain for an inhomogeneous $p(\,\cdot\,)$-Laplace equation with a variable exponent $p$ having a logarithmic continuity modulus.
Keywords:
Zaremba problem, Meyers estimates, capacity, embedding theorems,
higher integrability.
@article{TMF_2024_218_1_a0,
author = {Yu. A. Alkhutov and G. A. Chechkin},
title = {Multidimensional {Zaremba} problem for the $p(\,\cdot\,)$-laplace equation. {A} {Boyarsky--Meyers} estimate},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--22},
publisher = {mathdoc},
volume = {218},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - G. A. Chechkin TI - Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky--Meyers estimate JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 3 EP - 22 VL - 218 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/ LA - ru ID - TMF_2024_218_1_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A G. A. Chechkin %T Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky--Meyers estimate %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 3-22 %V 218 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/ %G ru %F TMF_2024_218_1_a0
Yu. A. Alkhutov; G. A. Chechkin. Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky--Meyers estimate. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/