@article{TMF_2024_218_1_a0,
author = {Yu. A. Alkhutov and G. A. Chechkin},
title = {Multidimensional {Zaremba} problem for the $p(\,\cdot\,)$-laplace equation. {A} {Boyarsky{\textendash}Meyers} estimate},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--22},
year = {2024},
volume = {218},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - G. A. Chechkin TI - Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 3 EP - 22 VL - 218 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/ LA - ru ID - TMF_2024_218_1_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A G. A. Chechkin %T Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 3-22 %V 218 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/ %G ru %F TMF_2024_218_1_a0
Yu. A. Alkhutov; G. A. Chechkin. Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a0/
[1] V. V. Zhikov, O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, Tamara Rozhkovskaya, Novosibirsk, 2017
[2] V. V. Zhikov, “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–710 | DOI | MR | Zbl
[3] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl
[4] V. V. Zhikov, S. E. Pastukhova, “O povyshennoi summiruemosti gradienta reshenii ellipticheskikh uravnenii s peremennym pokazatelem nelineinosti”, Matem. sb., 199:12 (2008), 19–52 | DOI | DOI | MR | Zbl
[5] L. Diening, P. Harjulehto, P. Hästö, M. R$\mathring{u}$žička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011 | DOI | MR
[6] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh zadach, Mir, M., 1972 | MR | Zbl
[7] D. Kinderlerer, G. Stampakkya, Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR | MR
[8] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503 | MR | MR | Zbl
[9] N. G. Meyers, “An $L^p$-estimate for the gradient of solutions of second order elliptic deivergence equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 189–206 | MR
[10] Yu. A. Alkhutov, G. A. Chechkin, V. G. Maz'ya, “On the Boyarsky–Meyers estimate of a solution to the Zaremba Problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211 | DOI | MR
[11] Yu. A. Alkhutov, A. G. Chechkina, “O mnogomernoi zadache Zaremby dlya neodnorodnogo uravneniya $p$-Laplasa”, Dokl. RAN. Matem., inform., prots. upr., 505 (2022), 37–41 | DOI | DOI | MR
[12] E. Acerbi, G. Mingione, “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 584 (2005), 117–148 | DOI | MR
[13] L. Diening, S. Schwarzsacher, “Global gradient estimates for the $p(\cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85 | DOI | MR
[14] V. V. Zhikov, “On some variational problems”, Russ. J. Math. Phys., 5:1 (1997), 105–116 | MR
[15] G. Cimatti, G. Prodi, “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Matem. Pura Appl., 152 (1988), 227–236 | DOI | MR
[16] S. D. Howison, J. F. Rodriges, M. Shillor, “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174:2 (1993), 573–588 | DOI | MR
[17] M. R$\mathring{u}$žička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, Heidelberg, 2000 | DOI | MR
[18] V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 342, Springer, Berlin, Heidelberg, 2011 | DOI | MR
[19] F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR
[20] M. Giaquinta, G. Modica, “Regularity results for some classes of higher order nonlinear elliptic systems”, J. für die reine und angewandte Math., 1979:311/312 (1979), 145–169 | DOI | MR
[21] I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Translations of Mathematical Monographs, 139, AMS, Providence, RI, 1994 | MR