@article{TMF_2023_217_3_a8,
author = {G. Kulkarni and N. A. Slavnov},
title = {Action of the~monodromy matrix elements in the~generalized algebraic {Bethe} ansatz},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {555--576},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a8/}
}
TY - JOUR AU - G. Kulkarni AU - N. A. Slavnov TI - Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 555 EP - 576 VL - 217 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a8/ LA - ru ID - TMF_2023_217_3_a8 ER -
G. Kulkarni; N. A. Slavnov. Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 555-576. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a8/
[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[2] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[3] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches Summer School, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl
[4] A. G. Izergin, V. E. Korepin, “The quantum inverse scattering method approach to correlation functions”, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl
[5] V. E. Korepin, “Dual field formulation of quantum integrable models”, Commun. Math. Phys., 113:2 (1987), 177–190 | DOI | MR
[6] T. Kojima, V. E. Korepin, N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum nonlinear Schrödinger equation”, Commun. Math. Phys., 188:3 (1997), 657–689, arXiv: hep-th/9611216 | DOI | MR
[7] M. Jimbo, K. Miki, T. Miwa, A. Nakayashiki, “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168:4 (1992), 256–263, arXiv: hep-th/9205055 | DOI | MR
[8] N. Kitanine, J. M. Maillet, V. Terras, “Correlation functions of the $XXZ$ Heisenberg spin-$1/2$ chain in a magnetic field”, Nucl. Phys. B, 567:3 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[9] F. Göhmann, A. Klümper, A. Seel, “Integral representations for correlation functions of the $XXZ$ chain at finite temperature”, J. Phys. A: Math. Gen., 37:31 (2004), 7625–7652, arXiv: hep-th/0405089 | DOI | MR
[10] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nucl. Phys. B, 712:3 (2005), 600–622, arXiv: hep-th/0406190 | DOI | MR
[11] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech., 2009:4 (2009), P04003, 66 pp., arXiv: ; N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “A form factor approach to the asymptotic behavior of correlation functions”, 2011, no. 12, 2011, P12010, 28 pp., arXiv: ; “Form factor approach to dynamical correlation functions in critical models”, 2012, no. 9, 2012, P09001, 33 pp., arXiv: 0808.02271110.08031206.2630 | DOI | MR | DOI | DOI | MR
[12] J. S. Caux, J. M. Maillet, “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field”, Phys. Rev. Lett., 95:7 (2005), 077201, 3 pp., arXiv: . cond-mat/0502365 | DOI
[13] R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, I. Affleck, “Dynamical spin structure factor for the anisotropic spin-$1/2$ Heisenberg chain”, Phys. Rev. Lett., 96:25 (2006), 257202, 4 pp., arXiv: ; “Dynamical structure factor at small $q$ for the $XXZ$ spin-$1/2$ chain”, J. Stat. Mech., 2007:8 (2007), P08022, 64 pp., arXiv: cond-mat/06036810706.4327 | DOI | DOI | MR
[14] J. S. Caux, P. Calabrese, N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas”, J. Stat. Mech., 2007:1 (2007), P01008, 21 pp., arXiv: cond-mat/0611321 | DOI
[15] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR
[16] N. A. Slavnov, Algebraic Bethe Ansatz and Correlation Functions: An Advanced Course, World Sci., Singapore, 2022 | DOI | MR
[17] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9–10 (1928), 619–636 | DOI
[18] B. Sutherland, “Two-dimensional hydrogen bonded crystals without the ice rule”, J. Math. Phys., 11:11 (1970), 3183–3186 | DOI
[19] C. Fan, F. Y. Wu, “General lattice model of phase transitions”, Phys. Rev. B, 2:3 (1970), 723–733 | DOI
[20] R. J. Baxter, “Eight-vertex model in lattice statistics”, Phys. Rev. Lett., 26:14 (1971), 832–833 | DOI
[21] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[22] N. Kitanine, J.-M. Maillet, V. Terras, “Form factors of the XXZ Heisenberg spin-$1/2$ finite chain”, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR
[23] F. Göhmann, V. E. Korepin, “Solution of the quantum inverse problem”, J. Phys. A: Math. Gen., 33:6 (2000), 1199–1220, arXiv: hep-th/9910253 | DOI | MR
[24] J. M. Maillet, V. Terras, “On the quantum inverse scattering problem”, Nucl. Phys. B, 575:3 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR
[25] N. A. Slavnov, “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v ramkakh algebraicheskogo anzatsa Bete”, TMF, 79:2 (1989), 232–240 | DOI | MR
[26] N. Slavnov, A. Zabrodin, A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model”, JHEP, 06 (2020), 123, 53 pp., arXiv: 2005.11224 | DOI | MR
[27] S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 10 (2019), 103, 16 pp., arXiv: 1908.00032 | DOI | MR
[28] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech., 2013:2 (2013), P02020, 24 pp. | DOI | MR
[29] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models with $GL(3)$ trigonometric $R$-matrix”, SIGMA, 9 (2013), 058, 23 pp., arXiv: 1304.7602 | MR
[30] S. Pakuliak, V. Rubtsov, A. Silantyev, “The SOS model partition function and the elliptic weight functions”, J. Phys. A: Math. Theor., 41:29 (2008), 295204, 20 pp., arXiv: 0802.0195 | DOI | MR
[31] W-L. Yang, Y.-Z. Zhang, “Partition function of the eight-vertex model with domain wall boundary condition”, J. Math. Phys., 50:8 (2009), 083518, 14 pp., arXiv: 0903.3089 | DOI | MR
[32] H. Rosengren, “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices”, Adv. Appl. Math., 43:2 (2009), 137–155, arXiv: 0801.1229 | DOI | MR
[33] G. Felder, “Elliptic quantum groups”, Proceedings of XIth International Congress of Mathematical Physics (July 18 – 22, 1994, Paris, France), International Press, Cambridge, MA, 1995, 211–218, arXiv: hep-th/9412207 | MR
[34] A. Hutsalyuk, A. Lyashik, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp., arXiv: 1605.06419 | MR
[35] A. G. Izergin, “Statisticheskaya summa shestivershinnoi modeli v konechnom ob'eme”, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl
[36] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[37] S. Kharchev, A. Zabrodin, “Theta vocabulary I”, J. Geom. Phys., 94 (2015), 19–31, arXiv: 1502.04603 | DOI | MR