A new stability equation for the Abelian Higgs–Kibble model
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 543-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the dynamics of the scalar Higgs field in the Abelian Higgs–Kibble model supplemented with a dimension-6 derivative operator can be constrained at the quantum level by a certain stability equation. It holds in the Landau gauge and is derived within the recently proposed extended field formalism, where the physical scalar is described by a gauge-invariant field variable. Physical implications of the stability equation are discussed.
Keywords: renormalization, beyond the Standard model.
@article{TMF_2023_217_3_a7,
     author = {A. Quadri},
     title = {A~new stability equation for {the~Abelian} {Higgs{\textendash}Kibble} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {543--554},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a7/}
}
TY  - JOUR
AU  - A. Quadri
TI  - A new stability equation for the Abelian Higgs–Kibble model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 543
EP  - 554
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a7/
LA  - ru
ID  - TMF_2023_217_3_a7
ER  - 
%0 Journal Article
%A A. Quadri
%T A new stability equation for the Abelian Higgs–Kibble model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 543-554
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a7/
%G ru
%F TMF_2023_217_3_a7
A. Quadri. A new stability equation for the Abelian Higgs–Kibble model. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 543-554. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a7/

[1] M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva (eds.), Higgs Physics at the HL-LHC and HE-LHC, CERN Yellow Reports: Monographs, 7, CERN, Geneva, 2019, arXiv: 1902.00134 | DOI

[2] W. Buchmüller, D. Wyler, “Effective lagrangian analysis of new interactions and flavour conservation”, Nucl. Phys. B, 268:3–4 (1986), 621–653 | DOI

[3] R. Alonso, E. E. Jenkins, A. V. Manohar, M. Trott, “Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology”, JHEP, 2014:04 (2014), 159, 17 pp., arXiv: 1312.2014 | DOI

[4] I. Brivio, M. Trott, “The standard model as an effective field theory”, Phys. Rep., 793 (2019), 1–98, arXiv: 1706.08945 | DOI | MR

[5] J. Gomis, S. Weinberg, “Are nonrenormalizable gauge theories renormalizable?”, Nucl. Phys. B, 469:3 (1996), 473–487, arXiv: hep-th/9510087 | DOI

[6] J. Gomis, J. París, S. Samuel, “Antibracket, antifields and gauge-theory quantization”, Phys. Rep., 259:1–2 (1995), 1–145, arXiv: hep-th/9412228 | DOI | MR

[7] A. A. Slavnov, “Massivnye kalibrovochnye polya”, TMF, 10:3 (1972), 305–328 | DOI

[8] J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | DOI | MR

[9] R. E. Kallosh, I. V. Tyutin, “Teorema ekvivalentnosti i kalibrovochnaya invariantnost v perenormiruemykh teoriyakh”, YaF, 17:1 (1973), 190–209 | MR

[10] S. Kamefuchi, L. O'Raifeartaigh, A. Salam, “Change of variables and equivalence theorems in quantum field theories”, Nucl. Phys., 28:4 (1961), 529–549 | DOI | MR

[11] R. Ferrari, M. Picariello, A. Quadri, “An approach to the equivalence theorem by the Slavnov–Taylor identities”, JHEP, 04 (2002), 033, 29 pp., arXiv: hep-th/0203200 | DOI

[12] J. Fröhlich, G. Morchio, F. Strocchi, “Higgs phenomenon without a symmetry breaking order parameter”, Phys. Lett. B, 97:2 (1980), 249–252 | DOI | MR

[13] J. Fröhlich, G. Morchio, F. Strocchi, “Higgs phenomenon without symmetry breaking order parameter”, Nucl. Phys. B, 190:3 (1981), 553–582 | DOI | MR

[14] D. Binosi, A. Quadri, “Off-shell renormalization in Higgs effective field theories”, JHEP, 04 (2018), 050, 28 pp., arXiv: 1709.09937 | DOI | MR

[15] D. Binosi, A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. Part I. General theory”, JHEP, 09 (2019), 032, 35 pp., arXiv: 1904.06692 | DOI | MR

[16] D. Binosi, A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. II. Ultraviolet coefficients”, Eur. Phys. J. C, 80 (2020), 807, 22 pp., arXiv: 1904.06693 | DOI

[17] D. Dudal, D. M. van Egmond, M. S. Guimarães, O. Holanda, L. F. Palhares, G. Peruzzo, S. P. Sorella, “Gauge-invariant spectral description of the $U(1)$ Higgs model from local composite operators”, JHEP, 02 (2020), 188, 38 pp., arXiv: 1912.11390 | DOI | MR

[18] D. Dudal, D. M. van Egmond, M. S. Guimaraes, L. F. Palhares, G. Peruzzo, S. P. Sorella, “Spectral properties of local gauge invariant composite operators in the $SU(2)$ Yang–Mills–Higgs model”, Eur. Phys. J. C, 81 (2021), 222, 29 pp., arXiv: 2008.07813 | DOI

[19] D. Binosi, A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. Part III. Operator mixing and $\beta$ functions”, JHEP, 05 (2020), 141, 28 pp., arXiv: 2001.07430 | DOI | MR

[20] D. Dudal, G. Peruzzo, S. P. Sorella, “The Abelian Higgs model under a gauge invariant looking glass: exploiting new Ward identities for gauge invariant operators and the Equivalence Theorem”, JHEP, 10 (2021), 039, 39 pp., arXiv: 2105.11011 | DOI | MR

[21] D. Dudal, D. M. van Egmond, I. F. Justo, G. Peruzzo, S. P. Sorella, “Gauge invariant operators in the $SU(2)$ Higgs model: Ward identities and renormalization”, Phys. Rev. D, 105:6 (2022), 065018, 16 pp., arXiv: 2111.11958 | DOI

[22] C. Becchi, A. Rouet, R. Stora, “Renormalization of the abelian Higgs–Kibble model”, Commun. Math. Phys., 42:2 (1975), 127–162 | DOI

[23] C. Becchi, A. Rouet, R. Stora, “The Abelian Higgs Kibble model, unitarity of the $S$-operator”, Phys. Lett. B, 52:3 (1974), 344–346 | DOI

[24] A. Quadri, “Abelian embedding formulation of the Stueckelberg model and its power-counting renormalizable extension”, Phys. Rev. D, 73:6 (2006), 065024, 13 pp., arXiv: hep-th/0601169 | DOI

[25] A. Quadri, “Higgs potential from derivative interactions”, Internat. J. Modern Phys. A, 32:16 (2017), 1750089, 25 pp., arXiv: 1610.00150 | DOI | MR

[26] D. Binosi, A. Quadri, “Renormalizable extension of the Abelian Higgs–Kibble model with a dimension-six operator”, Phys. Rev. D, 106:6 (2022), 065022, 17 pp., arXiv: 2206.00894 | DOI | MR

[27] A. Quadri, “Algebraic properties of BRST coupled doublets”, JHEP, 05 (2002), 051, 15 pp., arXiv: hep-th/0201122 | DOI | MR

[28] U. G. Aglietti, D. Anselmi, “Inconsistency of Minkowski higher-derivative theories”, Eur. Phys. J. C, 77 (2017), 84, 12 pp., arXiv: 1612.06510 | DOI