Mots-clés : Gross–Neveu model
@article{TMF_2023_217_3_a4,
author = {D. V. Bykov},
title = {Sigma models as {Gross{\textendash}Neveu} {models.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {499--514},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/}
}
D. V. Bykov. Sigma models as Gross–Neveu models. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 499-514. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/
[1] D. V. Bykov, “Sigma-modeli prostranstv flagov i nilpotentnye orbity”, Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Andreya Alekseevicha Slavnova, Trudy MIAN, 309, MIAN, M., 2020, 89–98, arXiv: 1911.07768 | DOI | DOI | MR
[2] D. V. Bykov, “Sigma-modeli kak modeli Grossa–Neve”, TMF, 208:2 (2021), 165–179, arXiv: 2106.15598 | DOI | DOI | MR
[3] A. Neveu, N. Papanicolaou, “Integrability of the classical $[\bar \psi _i \psi _i ]_2^2 $ and $[\bar \psi _i \psi _i ]_2^2 - [\bar \psi _i \gamma _5 \psi _i ]_2^2 $ interactions”, Commun. Math. Phys., 58:1 (1978), 31–64 | DOI | MR
[4] V. E. Zakharov, A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space-time”, Commun. Math. Phys., 74:1 (1980), 21–40 | DOI | MR
[5] G. V. Dunne, M. Thies, “Time-dependent Hartree–Fock solution of Gross–Neveu models: Twisted kink constituents of baryons and breathers”, Phys. Rev. Lett., 111:12 (2013), 121602, 5 pp., arXiv: 1306.4007 | DOI
[6] M. Thies, “Gross–Neveu model with $O(2)_LO(2)_R$ chiral symmetry: Duality with Zakharov–Mikhailov model and large $N$ solution”, Phys. Rev. D, 107:7 (2023), 076024, 13 pp., arXiv: 2302.07660 | DOI
[7] M. Ashwinkumar, J.-I. Sakamoto, M. Yamazaki, Dualities and discretizations of integrable quantum field theories from $4\mathrm{d}$ Chern–Simons theory, arXiv: 2309.14412
[8] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 2, Wiley, New York, 1996 | MR
[9] A. Thimm, “Integrable geodesic flows on homogeneous spaces”, Ergodic Theory Dynam. Systems, 1:4 (1981), 495–517 | DOI | MR
[10] D. Alekseevsky, A. Arvanitoyeorgos, “Riemannian flag manifolds with homogeneous geodesics”, Trans. Amer. Math. Soc., 359:8 (2007), 3769–3789 | DOI | MR
[11] A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, 1764, Springer, Berlin, Heidelberg, 2008 | DOI | MR
[12] K. Costello, M. Yamazaki, Gauge theory and integrability, III, arXiv: 1908.02289
[13] G. Segal, “Lie groups”, Lectures on Lie Groups and Lie Algebras, London Mathematical Society Student Texts, 32, eds. R. W. Carter, I. G. MacDonald, G. B. Segal, M. Taylor, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR
[14] M. Berger, P. Gauduchon, E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics, 194, Springer, Berlin, New York, 1971 | DOI | MR
[15] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras: An Introduction, Van Nostrand Reinhold Company, New York, 1993 | MR | Zbl
[16] B. Fu, “A survey on symplectic singularities and symplectic resolutions”, Ann. Math. Blaise Pascal, 13:2 (2006), 209–236 | DOI | MR
[17] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 2010 | DOI | MR
[18] Y. Namikawa, “Birational geometry of symplectic resolutions of nilpotent orbits”, Moduli Spaces and Arithmetic Geometry (RIMS, Kyoto University, Kyoto, Japan, September 8–15, 2004), Advanced Studies in Pure Mathematics, 45, eds. S. Mukai, Y. Miyaoka, S. Mori, A. Moriwaki, I. Nakamura, Mathematical Society of Japan, Tokyo, 2006, 75–116 | DOI | MR
[19] S. A. Kamalin, A. M. Perelomov, “Construction of canonical coordinates on polarized coadjoint orbits of Lie groups”, Commun. Math. Phys., 97:4 (1985), 553–568 | DOI | MR
[20] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR
[21] P. Z. Kobak, A. Swann, “Classical nilpotent orbits as hyper-kähler quotients”, Internat. J. Math., 7:2 (1996), 193–210 | DOI | MR
[22] D. Bykov, V. Krivorol, “Grassmannian sigma models”, to appear in Adv. Theor. Math. Phys., arXiv: 2306.04555
[23] T. Eguchi, P. B. Gilkey, A. J. Hanson, “Gravitation, gauge theories and differential geometry”, Phys. Rep., 66:6 (1980), 213–393 | DOI | MR
[24] A. M. Perelomov, “Chiral models: geometrical aspects”, Phys. Rep., 146:3 (1987), 135–213 | DOI | MR
[25] D. Bykov, A. Smilga, “Monopole harmonics on $\mathbb{CP}^{n-1}$”, SciPost Phys., 15 (2023), 195, 33 pp., arXiv: 2302.11691 | DOI