Sigma models as Gross--Neveu models.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 499-514

Voir la notice de l'article provenant de la source Math-Net.Ru

We summarize some (mostly geometric) facts underlying the relation between $2$D integrable sigma models and generalized Gross–Neveu models, emphasizing connections to the theory of nilpotent orbits, Springer resolutions, and quiver varieties. This is meant to shed light on the general setup when this correspondence holds.
Keywords: sigma model, nilpotent orbit.
Mots-clés : Gross–Neveu model
@article{TMF_2023_217_3_a4,
     author = {D. V. Bykov},
     title = {Sigma models as {Gross--Neveu} {models.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {499--514},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - Sigma models as Gross--Neveu models.~II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 499
EP  - 514
VL  - 217
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/
LA  - ru
ID  - TMF_2023_217_3_a4
ER  - 
%0 Journal Article
%A D. V. Bykov
%T Sigma models as Gross--Neveu models.~II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 499-514
%V 217
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/
%G ru
%F TMF_2023_217_3_a4
D. V. Bykov. Sigma models as Gross--Neveu models.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 499-514. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/