Sigma models as Gross--Neveu models.~II
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 499-514
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We summarize some (mostly geometric) facts underlying the relation between $2$D integrable sigma models and generalized Gross–Neveu models, emphasizing connections to the theory of nilpotent orbits, Springer resolutions, and quiver varieties. This is meant to shed light on the general setup when this correspondence holds.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
sigma model, nilpotent orbit.
Mots-clés : Gross–Neveu model
                    
                  
                
                
                Mots-clés : Gross–Neveu model
@article{TMF_2023_217_3_a4,
     author = {D. V. Bykov},
     title = {Sigma models as {Gross--Neveu} {models.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {499--514},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/}
}
                      
                      
                    D. V. Bykov. Sigma models as Gross--Neveu models.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 499-514. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a4/
