Resonance fluorescence of polar quantum systems in a bichromatic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 480-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study spectral properties of fluorescent radiation from a two-level quantum system with broken inversion spatial symmetry, which can be implemented as a model of a one-electron two-level atom whose electric dipole moment operator has permanent unequal diagonal matrix elements. We consider the case of the excitation of this system by a bichromatic laser field consisting of a high-frequency resonance component with the frequency coinciding with the atomic transition frequency and a low-frequency component whose frequency coincides with the Rabi frequency of the high-frequency component. We show that by changing the intensity of the low-frequency component, we can efficiently control spectral properties of the fluorescent radiation of the system in the high-frequency range. We discuss possible methods for the experimental detection and practical use of the effects under study.
Keywords: resonance fluorescence, two-level polar atom, polar molecule, Rydberg atom, quantum dot, broken inversion symmetry, bichromatic laser field, plasmon, dipole nanolaser.
Mots-clés : spaser
@article{TMF_2023_217_3_a3,
     author = {N. N. Bogolyubov and Jr. and A. V. Soldatov},
     title = {Resonance fluorescence of polar quantum systems in a~bichromatic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {480--498},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a3/}
}
TY  - JOUR
AU  - N. N. Bogolyubov
AU  - Jr.
AU  - A. V. Soldatov
TI  - Resonance fluorescence of polar quantum systems in a bichromatic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 480
EP  - 498
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a3/
LA  - ru
ID  - TMF_2023_217_3_a3
ER  - 
%0 Journal Article
%A N. N. Bogolyubov
%A Jr.
%A A. V. Soldatov
%T Resonance fluorescence of polar quantum systems in a bichromatic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 480-498
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a3/
%G ru
%F TMF_2023_217_3_a3
N. N. Bogolyubov; Jr.; A. V. Soldatov. Resonance fluorescence of polar quantum systems in a bichromatic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 480-498. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a3/

[1] B. R. Mollow, “Power spectrum of light scattered by two-level systems”, Phys. Rev., 188:5 (1969), 1969–1975 | DOI

[2] F. Schuda, C. R. Stroud, Jr., M. Hercher, “Observation of the resonant Stark effect at optical frequencies”, J. Phys. B: Atom. Mol. Phys., 7:7 (1974), L198–L202 | DOI

[3] F. Y. Wu, R. E. Grove, S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field”, Phys. Rev. Lett., 35:21 (1975), 1426–1429 | DOI

[4] W. Hartig, W. Rasmussen, R. Schieder, H. Walther, “Study of the frequency distribution of the fluorescent light induced by monochromatic radiation”, Z. Physik A, 278 (1976), 205–210 | DOI

[5] A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity”, Phys. Rev. Lett., 99:18 (2007), 187402, 4 pp. | DOI

[6] S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, M. Kamp, “Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot”, Optica, 2:12 (2015), 1072–1077 | DOI

[7] C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre, “Quadrature squeezed photons from a two-level system”, Nature, 525 (2015), 222–225 | DOI

[8] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Jr., Yu. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J. S. Tsai, “Resonance fluorescence of a single artificial atom”, Science, 327:5967 (2010), 840–843 | DOI

[9] V. A. Kovarskii, “Kvantovye protsessy v biologicheskikh molekulakh. Fermentativnyi kataliz”, UFN, 169:8 (1999), 889–908 | DOI | DOI

[10] O. V. Kibis, G. Ya. Slepyan, S. A. Maksimenko, A. Hoffmann, “Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry”, Phys. Rev. Lett., 102:2 (2009), 023601, 4 pp. | DOI

[11] A. V. Soldatov, “Laser frequency down-conversion by means of a monochromatically driven two-level system”, Modern Phys. Lett. B, 30:27 (2016), 1650331, 11 pp. | DOI

[12] A. V. Soldatov, “Broadband EM radiation amplification by means of a monochromatically driven two-level system”, Modern Phys. Lett. B, 31:4 (2017), 1750027, 11 pp. | DOI

[13] N. N. Bogolyubov (ml.), A. V. Soldatov, “Fluorestsentsiya v kvantovoi sisteme s narushennoi simmetriei”, VMU. Ser. 3. Fiz., Astron., 2018, no. 2, 31–39 | DOI

[14] N. N. Bogolyubov, Jr., A. V. Soldatov, “Low-frequency fluorescence spectrum of a laser driven polar quantum emitter damped by squeezed vacuum with finite bandwidth”, J. Phys.: Conf. Ser., 2056:1 (2021), 012001, 8 pp. | DOI

[15] N. N. Bogolubov, Jr., A. V. Soldatov, “EM field frequency down-conversion in a quantum two-level system damped by squeezed vacuum reservoir”, Phys. Part. Nucl., 51:4 (2020), 762–765 | DOI

[16] N. N. Bogolyubov, Jr., A. V. Soldatov, “Fluorescence spectrum of a laser driven polar quantum emitter damped by degenerate squeezed vacuum with finite bandwidth”, Appl. Math. Inf. Sci., 16:2 (2022), 235–241 | DOI

[17] N. N. Bogolyubov, Jr., A. V. Soldatov, “Electromagnetic radiation amplification by means of a driven two-level system damped by broadband squeezed vacuum reservoir”, J. Phys.: Conf. Ser., 1560 (2020), 012001, 8 pp. | DOI

[18] N. N. Bogolyubov, Jr., A. V. Soldatov, “Probe-absorption spectrum of a polar quantum emitter in a squeezed finite-bandwidth vacuum”, Phys. Part. Nucl. Lett., 19:1 (2022), 58–65 | DOI

[19] M. O. Skalli, M. S. Zubairi, Kvantovaya optika, Fizmatlit, M., 2004 | DOI

[20] R. R. Puri, Mathematical Methods of Quantum Optics, Springer Series in Optical Sciences, 79, Springer, Berlin, Heidelberg, 2001 | DOI

[21] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR

[22] H. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics Monographs, 18, Springer, Berlin, 1993 | DOI

[23] Z. Ficek, H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field”, Phys. Rev. A, 48:4 (1993), 3092–3104 | DOI

[24] Z. Ficek, H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component”, Phys. Rev. A, 53:6 (1996), 4275–4287 | DOI

[25] Z. Ficek, J. Seke, A. V. Soldatov, G. Adam, “Fluorescence spectrum of a two-level atom driven by a multiple modulated field”, Phys. Rev. A, 64:1 (2001), 013813, 10 pp. | DOI

[26] R. J. Glauber, Quantum Theory of Optical Coherence: Selected Papers and Lectures, Wiley-VCH, Weinheim, 2007 | DOI

[27] G. S. Agarwal, “Quantum statistical theories of spontaneous emission and their relation to other approaches”, Quantum Optics, Springer Tracts in Modern Physics, 70, ed. G. Höhler, Springer, Berlin, Heidelberg, 1974, 1–128 | DOI

[28] A. Joshi, S. S. Hassan, “On the nature of the resonance fluorescence spectrum of a driven two-level atom in an off-resonant squeezed vacuum”, J. Phys. B: At. Mol. Opt. Phys., 30 (1997), L557–L564 | DOI

[29] M. Lax, “Quantum noise. XI. Multitime correspondence between quantum and classical stochastic processes”, Phys. Rev., 172:2 (1968), 350–361 | DOI

[30] Z. Ficek, S. Swain, Quantum Interference and Coherence: Theory and Experiments, Springer Series in Optical Sciences, 100, Springer, New York, 2005 | DOI

[31] D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems”, Phys. Rev. Lett., 90:2 (2003), 027402, 4 pp. | DOI

[32] Y.-J. Lu, J. Kim, H.-Y. Chen et al., “Plasmonic nanolaser using epitaxially grown silver film”, Science, 337:6093 (2012), 450–453 | DOI

[33] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser”, Nature, 460 (2009), 1110–1112 | DOI

[34] S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials”, Nature, 466 (2010), 735–738 | DOI

[35] I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, E. P. O'Reilly, “Dipole nanolaser”, Phys. Rev. A, 71:6 (2005), 063812, 7 pp. | DOI

[36] E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, A. A. Lisyanskii, “Spektr poverkhnostnykh plazmonov, vozbuzhdaemykh spontannymi perekhodami kvantovoi tochki”, ZhETF, 144:2(8) (2013), 243–252 | DOI

[37] E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Lisyanskii, “Izmenenie spektra rezonansnoi fluorestsentsii dvukhurovnevogo atoma v blizhnem pole plazmonnoi nanochastitsy”, Pisma v ZhETF, 97:8 (2013), 522–528 | DOI | DOI

[38] V. Yu. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. A. Lisyanskii, “Relaksatsiya vzaimodeistvuyuschikh otkrytykh kvantovykh sistem”, UFN, 189:5 (2019), 544–558 | DOI