Violation of the $T$ invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 694-707 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the simultaneous interaction of a neutrino with matter and the electromagnetic field in the two-flavor model. We show that $T$-invariance violating terms can appear in the probabilities of not only spin-flip transitions but also flavor transitions between states with the same helicity in the case of the interaction via charged currents.
Mots-clés : neutrino
Keywords: $T$ symmetry violation.
@article{TMF_2023_217_3_a15,
     author = {A. V. Chukhnova},
     title = {Violation of the~$T$ invariance in the~probabilities of spin{\textendash}flavor transitions of neutrino characterized by a~real mixing matrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {694--707},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a15/}
}
TY  - JOUR
AU  - A. V. Chukhnova
TI  - Violation of the $T$ invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 694
EP  - 707
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a15/
LA  - ru
ID  - TMF_2023_217_3_a15
ER  - 
%0 Journal Article
%A A. V. Chukhnova
%T Violation of the $T$ invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 694-707
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a15/
%G ru
%F TMF_2023_217_3_a15
A. V. Chukhnova. Violation of the $T$ invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 694-707. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a15/

[1] A. D. Sakharov, “Narushenie CP-invariantnosti, C-asimmetriya i barionnaya asimmetriya Vselennoi”, UFN, 161:5 (1991), 61–64 | DOI | DOI

[2] M. Kobayashi, T. Maskawa, “$CP$-violation in the renormalizable theory of weak interaction”, Prog. Theor. Phys., 49:2 (1973), 652–657 | DOI

[3] C. Jarlskog, “A basis independent formulation of the connection between quark mass matrices, CP violation and experiment”, Z. Physik C, 29 (1985), 491–497 | DOI

[4] M. Fukugita, T. Yanagida, “Barygenesis without grand unification”, Phys. Lett. B, 174:1 (1986), 45–47 | DOI

[5] M. Trodden, “Electroweak baryogenesis”, Rev. Modern Phys., 71:5 (1999), 1463–1500, arXiv: hep-ph/9803479 | DOI

[6] S. Davidson, E. Nardi, Y. Nir, “Leptogenesis”, Phys. Rep., 466:4–5 (2008), 105–177, arXiv: 0802.2962 | DOI

[7] B. Pontekorvo, “Mezonii i antimezonii”, ZhETF, 33:2 (1957), 549–551

[8] Z. Maki, M. Nakagawa, S. Sakata, “Remarks on the unified model of elementary particles”, Prog. Theor. Phys., 28:5 (1962), 870–880 | DOI

[9] C. Giunti, C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford Univ. Press, Oxford, 2007 | DOI

[10] W. Pauli, “Exclusion principle, Lorentz group and reflexion of space-time and charge”, Niels Bohr and the Development of Physics, eds. W. Pauli, L. Rosenfeld, V. Weisskopf, McGraw-Hill, New York, 1955, 30–51 | MR

[11] A. V. Chukhnova, A. E. Lobanov, “Resonance enhancement of neutrino oscillations due to transition magnetic moments”, Eur. Phys. J. C, 81 (2021), 821, 9 pp., arXiv: 2005.04503 | DOI

[12] A. E. Lobanov, A. V. Chukhnova, “Asimmetriya rasprostraneniya levopolyarizovannykh neitrino v neodnorodnom magnitnom pole”, ZhETF, 160:4 (2021), 595–604 | DOI | DOI

[13] L. Wolfenstein, “Neutrino oscillations in matter”, Phys. Rev. D, 17:9 (1978), 2369–2374 | DOI

[14] A. E. Lobanov, A. V. Chukhnova, “Ostsillyatsii neitrino v odnorodnoi dvizhuscheisya srede”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 58:5 (2017), 22–27 | DOI

[15] V. A. Naumov, “Three neutrino oscillations in matter, cp-violation and topological phases”, Int. J. Mod. Phys. D, 1:2 (1992), 379–399 | DOI

[16] E. Akhmedov, P. Huber, M. Lindner, T. Ohlsson, “T violation in neutrino oscillations in matter”, Nucl. Phys. B, 608:1–2 (2001), 394–422, arXiv: hep-ph/0105029 | DOI

[17] S. T. Petcov, Y.-L. Zhou, “On neutrino mixing in matter and CP and T violation effects in neutrino oscillations”, Phys. Lett. B, 785 (2018), 95–104, arXiv: 1806.09112 | DOI

[18] A. E. Lobanov, “Ostsillyatsii chastits v Standartnoi modeli”, TMF, 192:1 (2017), 70–88 | DOI | DOI | MR

[19] A. E. Lobanov, “Particle quantum states with indefinite mass and neutrino oscillations”, Ann. Phys., 403 (2019), 82–105, arXiv: 1507.01256 | DOI | MR

[20] A. E. Lobanov, “Ostsillyatsii neitrino v plotnoi srede”, Izv. vuzov. Ser. Fizika, 59:11 (2016), 141–144, arXiv: 1612.01591 | DOI

[21] A. V. Chukhnova, A. E. Lobanov, “Neutrino flavor oscillations and spin rotation in matter and electromagnetic field”, Phys. Rev. D, 101:1 (2020), 013003, 18 pp., arXiv: 1906.09351 | DOI

[22] A. E. Lobanov, A. V. Chukhnova, “Narushenie T-simmetrii v ostsillyatsiyakh neitrino”, ZhETF, 162:3 (2022), 364–372 | DOI

[23] A. V. Chukhnova, A. E. Lobanov, “$T$ violation without complex entries in the lepton mixing matrix”, Phys. Rev. D, 105:7 (2022), 073010, 7 pp., arXiv: 2203.06426 | DOI

[24] K. Fujikawa, R. E. Shrock, “Magnetic moment of a massive neutrino and neutrino-spin rotation”, Phys. Rev. Lett., 45:12 (1980), 963–966 | DOI

[25] R. E. Shrock, “Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories”, Nucl. Phys. B, 206:3 (1982), 359–379 | DOI

[26] I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Schepkin, “Pravila summ v neitrinnykh ostsillyatsiyakh”, YaF, 35:5 (1982), 1210–1219

[27] W. Grimus, P. Stockinger, “Real oscillations of virtual neutrinos”, Phys. Rev. D, 54:5 (1996), 3414–3419 | DOI

[28] I. P. Volobuev, “Quantum field-theoretical description of neutrino and neutral kaon oscillations”, Internat. J. Modern Phys. A, 33:13 (2018), 1850075, 14 pp. | DOI | MR

[29] V. O. Egorov, I. P. Volobuev, “Neutrino oscillation processes in a quantum-field-theoretical approach”, Phys. Rev. D, 97:5 (2018), 093002, 9 pp. | DOI

[30] E. V. Arbuzova, A. E. Lobanov, E. M. Murchikova, “Pure quantum states of a neutrino with rotating spin in dense magnetized matter”, Phys. Rev. D, 81:4 (2010), 045001, 16 pp., arXiv: 0903.3358 | DOI

[31] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR

[32] A. E. Lobanov, “Radiation and self-polarization of neutral fermions in quasi-classical description”, J. Phys. A: Math. Gen., 39:23 (2006), 7517–7529, arXiv: hep-ph/0311021 | DOI | MR

[33] J. von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1927 (1927), 245–272 | Zbl

[34] L. D. Landau, “Das Dämpfungsproblem in der Wellenmechanik”, Z. Physik, 45:5–6 (1927), 430–441 | DOI