Keywords: reflection equation, quantum loop algebra, planar network.
@article{TMF_2023_217_3_a14,
author = {L. O. Chekhov},
title = {Cluster variables for affine {Lie{\textendash}Poisson} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {672--693},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/}
}
L. O. Chekhov. Cluster variables for affine Lie–Poisson systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 672-693. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/
[1] L. O. Chekhov, M. Shapiro, “Log-canonical coordinates for symplectic groupoid and cluster algebras”, Int. Math. Res. Notices, 2023:11 (2023), 9565–9652 | DOI | MR
[2] L. Chekhov, M. Mazzocco, V. Rubtsov, Algebras of quantum monodromy data and decorated character varieties, arXiv: 1705.01447
[3] V. Fock, A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR
[4] A. M. Gavrilik, A. U. Klimyk, “$q$-Deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21:3 (1991), 215–220 | DOI | MR
[5] J. E. Nelson, T. Regge, “Homotopy groups and $(2+1)$-dimensional quantum gravity”, Nucl. Phys. B, 328:1 (1989), 190–199 | DOI | MR
[6] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nucl. Phys. B, 339:2 (1990), 516–532 | DOI | MR
[7] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Internat. Math. Res. Notices, 1999:9 (1999), 473–493 | DOI | MR
[8] A. I. Bondal, “Simplekticheskii gruppoid treugolnykh bilineinykh form i gruppa kos”, Izv. RAN. Ser. matem., 68:4 (2004), 19–74 | DOI | DOI | MR | Zbl
[9] V. V. Fok, L. O. Chekhov, “Kvantovye modulyarnye preobrazovaniya, sootnoshenie pyatiugolnika i geodezicheskie”, Matematicheskaya fizika. Problemy kvantovoi teorii polya, Sbornik statei. K 65-letiyu so dnya rozhdeniya akademika Lyudviga Dmitrievicha Faddeeva, Trudy MIAN, 226, Nauka, MAIK “Nauka/Interperiodika”, M., 1999, 163–179 | MR | Zbl
[10] L. O. Chekhov, V. V. Fock, “Observables in 3d gravity and geodesic algebras”, Czech. J. Phys., 50:11 (2000), 1201–1208 | DOI | MR
[11] A. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009 | DOI | MR | Zbl
[12] M. Gekhtman, M. Shapiro, A. Vainshtein, “Cluster algebra and Poisson geometry”, Moscow Math. J., 3:3 (2003), 899–934 | DOI | MR | Zbl
[13] M. Gekhtman, M. Shapiro, A. Vainshtein, “Poisson geometry of directed networks in a disc”, Selecta Math. (N. S.), 15:1 (2009), 61–103 | DOI | MR
[14] M. Gekhtman, M. Shapiro, A. Vainshtein, “Poisson geometry of directed networks in an annulus”, J. Eur. Math. Soc., 14:2 (2012), 541–570 | DOI | MR
[15] L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775, arXiv: 0909.5350 | DOI | MR
[16] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl
[17] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), eds. A. E. Gleason, AMS, Providence, RI, 1987, 798–820 | MR
[18] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl
[19] S. Fomin, A. Zelevinsky, “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI