Cluster variables for affine Lie–Poisson systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 672-693
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that having any planar (cyclic or acyclicm) directed network on a disc with the only condition that all $n_1+m$ sources are separated from all $n_2+m$ sinks, we can construct a cluster-algebra realization of elements of an affine Lie–Poisson algebra $R(\lambda,\mu) {\stackrel{1}{T}} (\lambda) {\stackrel{1}{T}}(\mu)= {\stackrel{2}{T}}(\mu) {\stackrel{1}{T}}(\lambda)R(\lambda,\mu)$ with $({n_1\times n_2})$-matrices $T(\lambda)$. Upon satisfaction of some invertibility conditions, we can construct a realization of a quantum loop algebra. Having the quantum loop algebra, we can also construct a realization of the twisted Yangian algebra or of the quantum reflection equation. For each such a planar network, we can therefore construct a symplectic leaf of the corresponding infinite-dimensional algebra.
Mots-clés : $R$-matrix
Keywords: reflection equation, quantum loop algebra, planar network.
@article{TMF_2023_217_3_a14,
     author = {L. O. Chekhov},
     title = {Cluster variables for affine {Lie{\textendash}Poisson} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {672--693},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Cluster variables for affine Lie–Poisson systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 672
EP  - 693
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/
LA  - ru
ID  - TMF_2023_217_3_a14
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Cluster variables for affine Lie–Poisson systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 672-693
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/
%G ru
%F TMF_2023_217_3_a14
L. O. Chekhov. Cluster variables for affine Lie–Poisson systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 672-693. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a14/

[1] L. O. Chekhov, M. Shapiro, “Log-canonical coordinates for symplectic groupoid and cluster algebras”, Int. Math. Res. Notices, 2023:11 (2023), 9565–9652 | DOI | MR

[2] L. Chekhov, M. Mazzocco, V. Rubtsov, Algebras of quantum monodromy data and decorated character varieties, arXiv: 1705.01447

[3] V. Fock, A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR

[4] A. M. Gavrilik, A. U. Klimyk, “$q$-Deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21:3 (1991), 215–220 | DOI | MR

[5] J. E. Nelson, T. Regge, “Homotopy groups and $(2+1)$-dimensional quantum gravity”, Nucl. Phys. B, 328:1 (1989), 190–199 | DOI | MR

[6] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nucl. Phys. B, 339:2 (1990), 516–532 | DOI | MR

[7] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Internat. Math. Res. Notices, 1999:9 (1999), 473–493 | DOI | MR

[8] A. I. Bondal, “Simplekticheskii gruppoid treugolnykh bilineinykh form i gruppa kos”, Izv. RAN. Ser. matem., 68:4 (2004), 19–74 | DOI | DOI | MR | Zbl

[9] V. V. Fok, L. O. Chekhov, “Kvantovye modulyarnye preobrazovaniya, sootnoshenie pyatiugolnika i geodezicheskie”, Matematicheskaya fizika. Problemy kvantovoi teorii polya, Sbornik statei. K 65-letiyu so dnya rozhdeniya akademika Lyudviga Dmitrievicha Faddeeva, Trudy MIAN, 226, Nauka, MAIK “Nauka/Interperiodika”, M., 1999, 163–179 | MR | Zbl

[10] L. O. Chekhov, V. V. Fock, “Observables in 3d gravity and geodesic algebras”, Czech. J. Phys., 50:11 (2000), 1201–1208 | DOI | MR

[11] A. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009 | DOI | MR | Zbl

[12] M. Gekhtman, M. Shapiro, A. Vainshtein, “Cluster algebra and Poisson geometry”, Moscow Math. J., 3:3 (2003), 899–934 | DOI | MR | Zbl

[13] M. Gekhtman, M. Shapiro, A. Vainshtein, “Poisson geometry of directed networks in a disc”, Selecta Math. (N. S.), 15:1 (2009), 61–103 | DOI | MR

[14] M. Gekhtman, M. Shapiro, A. Vainshtein, “Poisson geometry of directed networks in an annulus”, J. Eur. Math. Soc., 14:2 (2012), 541–570 | DOI | MR

[15] L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775, arXiv: 0909.5350 | DOI | MR

[16] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl

[17] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), eds. A. E. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[18] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl

[19] S. Fomin, A. Zelevinsky, “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI