Comments on a~4-derivative scalar theory in 4~dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 649-671

Voir la notice de l'article provenant de la source Math-Net.Ru

We review and elaborate on some aspects of the classically scale-invariant renormalizable $4$-derivative scalar theory $L=\phi\,\partial^4\phi+g(\partial\phi)^4$. Similar models appear, e.g., in the context of conformal supergravity or in the description of the crystalline phase of membranes. Considering this theory in Minkowski signature, we suggest how to define Poincaré-invariant scattering amplitudes by assuming that only massless oscillating (nongrowing) modes appear as external states. In such shift-symmetric interacting theory, there are no IR divergences despite the presence of $1/q^4$ internal propagators. We discuss how nonunitarity of this theory manifests itself at the level of the one-loop massless scattering amplitude.
Keywords: scalar field theory, higher derivatives.
@article{TMF_2023_217_3_a13,
     author = {A. A. Tseytlin},
     title = {Comments on a~4-derivative scalar theory in 4~dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {649--671},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/}
}
TY  - JOUR
AU  - A. A. Tseytlin
TI  - Comments on a~4-derivative scalar theory in 4~dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 649
EP  - 671
VL  - 217
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/
LA  - ru
ID  - TMF_2023_217_3_a13
ER  - 
%0 Journal Article
%A A. A. Tseytlin
%T Comments on a~4-derivative scalar theory in 4~dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 649-671
%V 217
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/
%G ru
%F TMF_2023_217_3_a13
A. A. Tseytlin. Comments on a~4-derivative scalar theory in 4~dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 649-671. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/