@article{TMF_2023_217_3_a13,
author = {A. A. Tseytlin},
title = {Comments on a~4-derivative scalar theory in 4~dimensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {649--671},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/}
}
A. A. Tseytlin. Comments on a 4-derivative scalar theory in 4 dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 649-671. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a13/
[1] N. Nakanishi, “Remarks on the dipole-ghost scattering states”, Phys. Rev. D, 3:6 (1971), 1343–1346 ; S. Blaha, “Towards a field theory of hadron binding”, Phys. Rev. D, 10:12 (1974), 4268–4277 ; A. Gavrielides, T. K. Kuo, S. Y. Lee, “Ghost problem of quantum field theories with higher derivatives”, Phys. Rev. D, 13:10 (1976), 2912–2915 ; K. S. Stelle, “Classical gravity with higher derivatives”, Gen. Rel. Grav., 9:4 (1978), 353–371 ; H. Narnhofer, W. E. Thirring, “The taming of the dipole ghost”, Phys. Lett. B, 76:4 (1978), 428–432 ; B.-G. Englert, J. Karkowski, J. M. Rayski, Jr., “Conditions on classical sources for a quantum scalar field with higher order derivatives”, Phys. Lett. B, 83:3–4 (1979), 399–402 ; D. Zwanziger, “Lesson from a soluble model of quantum electrodynamics”, Phys. Rev. D, 17:2 (1978), 457–468 ; A. Z. Capri, G. Grübl, R. Kobes, “Fock space construction of the massless dipole field”, Ann. Phys., 147:1 (1983), 140–170 ; W. Heidenreich, “Group theory of the dipole ghost”, J. Math. Phys., 25:2 (1984), 376–379 ; M. Flato, C. Fronsdal, “How the BRST invariance of QED is induced from the underlying singleton field theory”, Phys. Lett. B, 189:1–2 (1987), 145–148 ; V. O. Rivelles, “Triviality of higher derivative theories”, Phys. Lett. B, 577:3–4 (2003), 137–142, arXiv: hep-th/0304073 | DOI | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR
[2] B. T. Binegar, “On the state space of the dipole ghost”, Lett. Math. Phys., 8:2 (1984), 149–158 | DOI | MR
[3] E. d'Emilio, M. Mintchev, “A gauge model with confinement in four dimensions”, Phys. Lett. B, 89:2 (1980), 207–210 ; “Nonperturbative approach to the infrared behavior in physical charged sectors of gauge theories”, Phys. Rev. D, 27:8 (1983), 1840–1851 | DOI | DOI
[4] M. Eastwood, T. Leistner, “Higher symmetries of the square of the Laplacian”, Symmetries and Overdetermined Systems of Partial Differential Equations, The IMA Volumes in Mathematics and its Applications, 144, eds. M. Eastwood, W. Miller, Springer, New York, 2008, 319–338, arXiv: ; E. Joung, K. Mkrtchyan, “Partially-massless higher-spin algebras andtheir finite-dimensional truncations”, JHEP, 01 (2016), 003, 21 pp., arXiv: math.DG/06106101508.07332 | DOI | MR | DOI | MR
[5] C. Brust, K. Hinterbichler, “Free $\square^k$ scalar conformal field theory”, JHEP, 02 (2017), 066, 51 pp., arXiv: ; X. Bekaert, M. Grigoriev, “Higher-order singletons, partially massless fields, and their boundary values in the ambient approach”, Nucl. Phys. B, 876:2 (2013), 667–714, arXiv: 1607.074391305.0162 | DOI | MR | DOI | MR
[6] T. Adamo, S. Nakach, A. A. Tseytlin, “Scattering of conformal higher spin fields”, JHEP, 07 (2018), 016, 38 pp., arXiv: 1805.00394 | DOI | MR
[7] T. Levy, Y. Oz, “Liouville conformal field theories in higher dimensions”, JHEP, 06 (2018), 119, 16 pp., arXiv: 1804.02283 | DOI | MR
[8] G. W. Gibbons, C. N. Pope, S. Solodukhin, “Higher derivative scalar quantum field theory in curved spacetime”, Phys. Rev. D, 100:10 (2019), 105008, 20 pp., arXiv: 1907.03791 | DOI | MR
[9] M. Romoli, O. Zanusso, “Different kind of four-dimensional brane for string theory”, Phys. Rev. D, 105:12 (2022), 126009, 13 pp., arXiv: 2110.05584 | DOI | MR
[10] L. Boyle, N. Turok, Cancelling the vacuum energy and Weyl anomaly in the standard model with dimension-zero scalar fields, arXiv: 2110.06258
[11] M. Safari, A. Stergiou, G. P. Vacca, O. Zanusso, “Scale and conformal invariance in higher derivative shift symmetric theories”, JHEP, 02 (2022), 034, 28 pp., arXiv: 2112.01084 | DOI | MR
[12] A. Stergiou, G. P. Vacca, O. Zanusso, “Weyl covariance and the energy momentum tensors of higher-derivative free conformal field theories”, JHEP, 06 (2022), 104, 33 pp., arXiv: ; H. Osborn, A. Stergiou, “$C_T$ for non-unitary CFTs in higher dimensions”, JHEP, 06 (2016), 079, 21 pp., arXiv: 2202.047011603.07307 | DOI | MR | DOI | MR
[13] A. Chalabi, C. P. Herzog, K. Ray, B. Robinson, J. Sisti, A. Stergiou, Boundaries in free higher derivative conformal field theories, arXiv: 2211.14335
[14] D. Buccio, R. Percacci, “Renormalization group flows between Gaussian fixed points”, JHEP, 10 (2022), 113, 22 pp., arXiv: 2207.10596 | DOI | MR
[15] A. Smilga, “Classical and quantum dynamics of higher-derivative systems”, Internat. J. Modern Phys. A, 32:33 (2017), 1730025, 30 pp., arXiv: ; T. Damour, A. Smilga, “Dynamical systems with benign ghosts”, Phys. Rev. D, 105:4 (2022), 045018, 15 pp., arXiv: 1710.115382110.11175 | DOI | MR | DOI | MR
[16] F. David, E. Guitter, “Crumpling transition in elastic membranes: renormalization group treatment”, Europhys. Lett., 5:8 (1988), 709–713 | DOI
[17] M. J. Bowick, A. Travesset, “The statistical mechanics of membranes”, Phys. Rep., 344:4–6 (2001), 255–308, arXiv: cond-mat/0002038 | DOI | MR
[18] O. Coquand, D. Mouhanna, S. Teber, “Flat phase of polymerized membranes at two-loop order”, Phys. Rev. E, 101:6 (2020), 062104, 8 pp., arXiv: ; S. Metayer, D. Mouhanna, S. Teber, Flat polymerized membranes at three-loop order, arXiv: 2003.139732210.04309 | DOI
[19] E. Bergshoeff, M. De Roo, B. De Wit, “Extended conformal supergravity”, Nucl. Phys. B, 182:1–2 (1981), 173–204 | DOI | MR
[20] E. S. Fradkin, A. A. Tseytlin, “One-loop $\beta$-function in conformal supergravities”, Nucl. Phys. B, 203:1 (1982), 157–178 | DOI
[21] E. S. Fradkin, A. A. Tseytlin, “Conformal supergravity”, Phys. Rep., 119:4–5 (1985), 233-362 | DOI | MR
[22] S. M. Kuzenko, “Non-compact duality, super-Weyl invariance and effective actions”, JHEP, 07 (2020), 222, 27 pp., arXiv: ; I. L. Buchbinder, S. M. Kuzenko, “Nonlocal action for supertrace anomalies in superspace of $N=1$ supergravity”, Phys. Lett. B, 202:2 (1988), 233–237 ; D. Butter, B. De Wit, S. M. Kuzenko, I. Lodato, “New higher-derivative invariants in $N=2$ supergravity and the Gauss–Bonnet term”, JHEP, 12 (2013), 062, 45 pp., arXiv: 2006.009661307.6546 | DOI | MR | DOI | MR | DOI | MR
[23] N. Berkovits, E. Witten, “Conformal supergravity in twistor-string theory”, JHEP, 08 (2004), 009, 36 pp., arXiv: hep-th/0406051 | DOI | MR
[24] M. Beccaria, S. Nakach, A. A. Tseytlin, “On triviality of S-matrix in conformal higher spin theory”, JHEP, 09 (2016), 034, 32 pp., arXiv: 1607.06379 | DOI | MR
[25] E. S. Fradkin, A. A. Tseytlin, “Conformal anomaly in Weyl theory and anomaly free superconformal theories”, Phys. Lett. B, 134:3–4 (1984), 187–193 | DOI | MR
[26] Z. Komargodski, A. Schwimmer, “On renormalization group flows in four dimensions”, JHEP, 12 (2011), 099, 20 pp., arXiv: 1107.3987 | DOI | MR
[27] H. Osborn, “Local couplings and $Sl(2,\mathbb R)$ invariance for gauge theories at one loop”, Phys. Lett. B, 561:1–2 (2003), 174–182, arXiv: hep-th/0302119 | DOI | MR
[28] I. L. Buchbinder, N. G. Pletnev, A. A. Tseytlin, “ ‘Induced’ $\mathscr N=4$ conformal supergravity”, Phys. Lett. B, 717:1–3 (2012), 274–279, arXiv: 1209.0416 | DOI | MR
[29] T. D. Lee, G. C. Wick, “Finite theory of quantum electrodynamics”, Phys. Rev. D, 2:6 (1970), 1033–1048 ; E. Tomboulis, “Renormalizability and asymptotic freedom in quantum gravity”, Phys. Lett. B, 97:1 (1980), 77–80 ; S. W. Hawking, T. Hertog, “Living with ghosts”, Phys. Rev. D, 65:10 (2002), 103515, 8 pp., arXiv: ; B. Grinstein, D. O'Connell, M. B. Wise, “The Lee–Wick standard model”, Phys. Rev. D, 77:2 (2008), 025012, 9 pp., arXiv: ; P. D. Mannheim, “Solution to the ghost problem in fourth order derivative theories”, Found. Phys., 37:4–5 (2007), 532–571, arXiv: ; A. Salvio, A. Strumia, “Quantum mechanics of 4-derivative theories”, Eur. Phys. J. C, 76:4 (2016), 227, 15 pp., arXiv: ; M. Raidal, H. Veermäe, “On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost”, Nucl. Phys. B, 916 (2017), 607–626, arXiv: ; D. Anselmi, M. Piva, “A new formulation of Lee–Wick quantum field theory”, JHEP, 06 (2017), 066, 23 pp., arXiv: ; “Perturbative unitarity of Lee–Wick quantum field theory”, Phys. Rev. D, 96:4 (2017), 045009, 15 pp., arXiv: ; A. Strumia, “Interpretation of quantum mechanics with indefinite norm”, Physics, 1:1 (2019), 17–32, arXiv: ; A. Salvio, “Quadratic gravity”, Front. Phys., 6 (2018), 77, 24 pp., arXiv: ; J. F. Donoghue, G. Menezes, “Unitarity, stability, and loops of unstable ghosts”, Phys. Rev. D, 100:10 (2019), 105006, 19 pp., arXiv: hep-th/01070880704.1845hep-th/06081541512.012371611.034981703.045841703.055631709.049251804.099441908.02416 | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | DOI | MR
[30] S. Dubovsky, R. Flauger, V. Gorbenko, “Solving the simplest theory of quantum gravity”, JHEP, 09 (2012), 133, 35 pp., arXiv: 1205.6805 | DOI | Zbl
[31] S. Weinberg, The Quantum Theory of Fields, v. 1, Foundations, Cambridge Univ. Press, Cambridge, 2005 | DOI | MR
[32] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, R. Rattazzi, “Causality, analyticity and an IR obstruction to UV completion”, JHEP, 10 (2006), 014, 37 pp., arXiv: hep-th/0602178 | DOI | MR
[33] D. G. Boulware, L. S. Brown, “Tree graphs and classical fields”, Phys. Rev., 172:5 (1968), 1628–1631 ; И. Я. Арефьева, А. А. Славнов, Л. Д. Фаддеев, “Производящий функционал для $S$-матрицы в калибровочно-инвариантных теориях”, ТМФ, 21:3 (1974), 311–321 | DOI | DOI
[34] M. Carrillo González, C. de Rham, V. Pozsgay, A. J. Tolley, “Causal effective field theories”, Phys. Rev. D, 106:10 (2022), 105018, 25 pp., arXiv: 2207.03491 | DOI | MR
[35] E. S. Fradkin, A. A. Tseytlin, “Renormalizable asymptotically free quantum theory of gravity”, Nucl. Phys. B, 201:3 (1982), 469–491 ; Higher-derivative quantum gravity: one-loop counterterms and asymptotic freedom, P. N. Lebedev Phisycal Institute Preprint No 70, 1981 https://cds.cern.ch/record/128959/files/CM-P00067563.pdf | DOI
[36] M. Peskin, D. Shreder, Vvedenie v kvantovuyu teoriyu polya, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2001 | MR
[37] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge Univ. Press, Cambridge, 2014 | MR
[38] L. Buoninfante, “Contour prescriptions in string-inspired nonlocal field theories”, Phys. Rev. D, 106:12 (2022), 126028, 28 pp., arXiv: 2205.15348 | DOI
[39] A. Pais, G. E. Uhlenbeck, “On field theories with non-localized action”, Phys. Rev., 79:1 (1950), 145–165 | DOI | MR
[40] L. Buoninfante, Ghost and singularity free theories of gravity, arXiv: 1610.08744
[41] A. S. Koshelev, A. Tokareva, “Unitarity of Minkowski nonlocal theories made explicit”, Phys. Rev. D, 104:2 (2021), 025016, 9 pp., arXiv: 2103.01945 | DOI | MR
[42] V. A. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006 | DOI | MR
[43] G. Leibbrandt, “Introduction to the technique of dimensional regularization”, Rev. Mod. Phys., 47:4 (1975), 849–876 | DOI | MR