@article{TMF_2023_217_3_a12,
author = {K. V. Stepanyantz},
title = {The~structure of quantum corrections and exact results in supersymmetric theories from the~higher covariant derivative regularization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {630--648},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/}
}
TY - JOUR AU - K. V. Stepanyantz TI - The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 630 EP - 648 VL - 217 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/ LA - ru ID - TMF_2023_217_3_a12 ER -
%0 Journal Article %A K. V. Stepanyantz %T The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 630-648 %V 217 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/ %G ru %F TMF_2023_217_3_a12
K. V. Stepanyantz. The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 630-648. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/
[1] A. A. Slavnov, “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31:2 (1971), 301–315 | DOI | MR
[2] A. A. Slavnov, “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174–177 | DOI
[3] A. A. Slavnov, “Regulyarizatsiya Pauli–Villarsa dlya neabelevykh kalibrovochnykh grupp”, TMF, 33:2 (1977), 210–217 | DOI | MR
[4] W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | DOI | MR
[5] W. Siegel, “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94:1 (1980), 37–40 | DOI | MR
[6] V. K. Krivoschekov, “Invariantnaya regulyarizatsiya dlya supersimmetrichnykh kalibrovochnykh teorii”, TMF, 36:3 (1978), 291–302 | DOI | MR
[7] P. West, “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268:1 (1986), 113–124 | DOI | MR
[8] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229:2 (1983), 381–393 | DOI
[9] D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang–Mills theory”, Phys. Lett. B, 123:1–2 (1983), 45–46 | DOI | MR
[10] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, M. A. Shifman, “Funktsiya Gell-Manna–Lou v supersimmetrichnykh kalibrovochnykh teoriyakh. Instantony protiv traditsionnogo podkhoda”, YaF, 43:2 (1986), 459
[11] A. I. Vainshtein, M. A. Shifman, “Reshenie problemy anomalii v supersimmetrichnykh kalibrovochnykh teoriyakh i operatornoe razlozhenie”, ZhETF, 91:3 (1986), 723–744
[12] W. A. Bardeen, A. J. Buras, D. W. Duke, T. Muta, “Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories”, Phys. Rev. D, 18:11 (1978), 3998–4017 | DOI
[13] L. V. Avdeev, O. V. Tarasov, “The three-loop beta-function in the $N=1,2,4$ supersymmetric Yang–Mills theories”, Phys. Lett. B, 112:4–5 (1982), 356–358 | DOI
[14] I. Jack, D. R. T. Jones, C. G. North, “$N=1$ supersymmetry and the three-loop gauge $\beta$-function”, Phys. Lett. B, 386:1–4 (1996), 138–140 | DOI
[15] I. Jack, D. R. T. Jones, C. G. North, “Scheme dependence and the NSVZ $\beta$-function”, Nucl. Phys. B, 486:1–2 (1997), 479–499, arXiv: hep-ph/9609325 | DOI
[16] I. Jack, D. R. T. Jones, A. Pickering, “The connection between DRED and NSVZ”, Phys. Lett. B, 435:1–2 (1998), 61–66, arXiv: hep-ph/9805482 | DOI
[17] R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, M. Steinhauser, “Four-loop $\beta$ function and mass anomalous dimension in dimensional reduction”, JHEP, 12 (2006), 024, 13 pp., arXiv: hep-ph/0610206 | DOI | MR
[18] L. Mihaila, “Precision calculations in supersymmetric theories”, Adv. High Energy Phys., 2013 (2013), 607807, 64 pp., arXiv: 1310.6178 | DOI | MR
[19] A. L. Kataev, K. V. Stepanyantz, “Scheme independent consequence of the NSVZ relation for $\mathcal{N}$ = 1 SQED with $N_f$ flavors”, Phys. Lett. B, 730 (2014), 184–189, arXiv: 1311.0589 | DOI
[20] A. L. Kataev, K. V. Stepanyants, “$\beta$-Funktsiya Novikova–Shifmana–Vainshteina–Zakharova v supersimmetrichnykh teoriyakh pri razlichnykh regulyarizatsiyakh i perenormirovochnykh predpisaniyakh”, TMF, 181:3 (2014), 475–486, arXiv: 1405.7598 | DOI | DOI | MR
[21] B. S. DeVitt, Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 | MR | MR | Zbl
[22] L. F. Abbott, “The background field method beyond one loop”, Nucl. Phys. B, 185:1 (1981), 189–203 | DOI
[23] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50 | MR
[24] S. J. Gates, Jr., M. T. Grisaru, M. Roček, W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Frontiers in Physics, 58, AIP, Melville, NY, 1983, arXiv: hep-th/0108200
[25] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1990 | MR | Zbl
[26] I. L. Buchbinder, S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol, UK, 1998 | MR
[27] O. Piguet, K. Sibold, “Renormalization of $N=1$ supersymmetrical Yang–Mills theories: (I). The classical theory”, Nucl. Phys. B, 197:2 (1982), 257–271 | DOI
[28] O. Piguet, K. Sibold, “Renormalization of $N=1$ supersymmetrical Yang–Mills theories: (II). The radiative corrections”, Nucl. Phys. B, 197:2 (1982), 272–289 | DOI
[29] I. V. Tyutin, “Perenormirovka superkalibrovochnykh teorii s nerasshirennoi supersimmetriei”, YaF, 37:3 (1983), 761–771 | Zbl
[30] J. W. Juer, D. Storey, “Nonlinear renormalization in superfield gauge theories”, Phys. Lett. B, 119:1–3 (1982), 125–127 | DOI
[31] J. W. Juer, D. Storey, “One loop renormalization of superfield Yang–Mills theories”, Nucl. Phys. B, 216:1 (1983), 185–208 | DOI
[32] A. E. Kazantsev, M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, M. B. Skoptsov, K. V. Stepanyantz, “Two-loop renormalization of the Faddeev–Popov ghosts in $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2018), 020, 22 pp., arXiv: 1805.03686 | DOI | MR
[33] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | MR | Zbl
[34] S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, K. V. Stepanyantz, “One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization”, JHEP, 05 (2016), 014, 21 pp., arXiv: 1603.04347 | DOI
[35] A. E. Kazantsev, M. B. Skoptsov, K. V. Stepanyantz, “One-loop polarization operator of the quantum gauge superfield for $\mathcal{N}=1$ SYM regularized by higher derivatives”, Modern Phys. Lett. A, 32:36 (2017), 1750194, 13 pp., arXiv: 1709.08575 | DOI | MR
[36] A. L. Kataev, K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for $\mathcal{N} = 1$ SQED”, Nucl. Phys. B, 875:2 (2013), 459–482, arXiv: 1305.7094 | DOI | MR
[37] K. V. Stepanyantz, “Non-renormalization of the $V\bar cc$-vertices in $\mathcal{N}=1$ supersymmetric theories”, Nucl. Phys. B, 909 (2016), 316–335, arXiv: 1603.04801 | DOI | MR
[38] J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | DOI | MR
[39] A. A. Slavnov, “Tozhdestva Uorda v kalibrovochnykh teoriyakh”, TMF, 10:2 (1972), 153–161 | DOI
[40] M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, K. V. Stepanyantz, “Finiteness of the two-loop matter contribution to the triple gauge-ghost vertices in $\mathcal N=1$ supersymmetric gauge theories regularized by higher derivatives”, Phys. Rev. D, 104:2 (2021), 025008, 12 pp., arXiv: 2102.12314 | DOI | MR
[41] M. Kuzmichev, N. Meshcheriakov, S. Novgorodtsev, V. Shatalova, I. Shirokov, K. Stepanyantz, “Finiteness of the triple gauge-ghost vertices in $\mathcal {N}=1$ supersymmetric gauge theories: the two-loop verification”, Eur. Phys. J. C, 82:1 (2022), 69, 12 pp., arXiv: 2111.04031 | DOI | MR
[42] A. A. Soloshenko, K. V. Stepanyants, “Trekhpetlevaya $\beta$-funktsiya $N=1$ supersimmetrichnoi elektrodinamiki, regulyarizovannoi vysshimi proizvodnymi”, TMF, 140:3 (2004), 437–459 | DOI | DOI | Zbl
[43] A. V. Smilga, A. Vainshtein, “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants”, Nucl. Phys. B, 704:3 (2005), 445–474 | DOI | MR
[44] K. V. Stepanyantz, “Derivation of the exact NSVZ $\beta$-function in $N=1$ SQED, regularized by higher derivatives, by direct summation of Feynman diagrams”, Nucl. Phys. B, 852:1 (2011), 71–107, arXiv: 1102.3772 | DOI | MR
[45] K. V. Stepanyantz, “The $\beta$-function of $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives”, JHEP, 10 (2019), 011, 48 pp., arXiv: 1908.04108 | DOI | MR
[46] A. I. Vainshtein, V. I. Zakharov, M. A. Shifman, “Tochnaya funktsiya Gell-Manna–Lou v supersimmetrichnoi elektrodinamike”, Pisma ZhETF, 42:4 (1985), 182–184
[47] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function in supersymmetric electrodynamics”, Phys. Lett. B, 166:3 (1986), 334–336 | DOI
[48] A. E. Kazantsev, K. V. Stepanyants, “Sootnoshenie mezhdu dvukhtochechnymi funktsiyami Grina $\mathcal N=1$ SKED s $N_f$ aromatami, regulyarizovannoi vysshimi proizvodnymi, v trekhpetlevom priblizhenii”, ZhETF, 147:4 (2015), 714–728, arXiv: 1410.1133 | DOI
[49] V. Yu. Shakhmanov, K. V. Stepanyantz, “Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization”, Nucl. Phys. B, 920 (2017), 345–367, arXiv: 1703.10569 | DOI | MR
[50] A. E. Kazantsev, V. Yu. Shakhmanov, K. V. Stepanyantz, “New form of the exact NSVZ $\beta$-function: the three-loop verification for terms containing Yukawa couplings”, JHEP, 04 (2018), 130, 36 pp., arXiv: 1803.06612 | DOI | MR
[51] K. Stepanyantz, “The all-loop perturbative derivation of the NSVZ $\beta$-function and the NSVZ scheme in the non-Abelian case by summing singular contributions”, Eur. Phys. J. C, 80:10 (2020), 911, 28 pp., arXiv: 2007.11935] | DOI
[52] A. E. Kazantsev, K. V. Stepanyantz, “Two-loop renormalization of the matter superfields and finiteness of $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2020), 108, arXiv: 2004.00330 | MR
[53] A. Parkes, P. West, “Finiteness in rigid supersymmetric theories”, Phys. Lett. B, 138:1–3 (1984), 99–104 | DOI
[54] P. West, “The Yukawa $\beta$-function in $N=1$ rigid supersymmetric theories”, Phys. Lett. B, 137:5–6 (1984), 371–373 | DOI
[55] S. Heinemeyer, J. Kubo, M. Mondragón, O. Piguet, K. Sibold, W. Zimmermann, G. Zoupanos, Reduction of couplings and its application in particle physics. Finite theories. Higgs and top mass predictions, arXiv: 1411.7155
[56] S. Heinemeyer, M. Mondragón, N. Tracas, G. Zoupanos, “Reduction of couplings and its application in particle physics”, Phys. Rep., 814 (2019), 1–43, arXiv: 1904.00410 | DOI | MR
[57] K. Stepanyantz, “Exact $\beta$-functions for $\mathcal{N}=1$ supersymmetric theories finite in the lowest loops”, Eur. Phys. J. C, 81:7 (2021), 571, 11 pp., arXiv: 2105.00900 | DOI
[58] D. I. Kazakov, “Finite $N=1$ SUSY field theories and dimensional regularization”, Phys. Lett. B, 179:4 (1986), 352–354 | DOI
[59] A. V. Ermushev, D. I. Kazakov, O. V. Tarasov, “Finite $N=1$ supersymmetric grand unified theories”, Nucl. Phys. B, 281:1–2 (1987), 72–84 | DOI
[60] C. Lucchesi, O. Piguet, K. Sibold, “Vanishing $\beta$-functions in $N=1$ supersymmetric gauged theories”, Helv. Phys. Acta, 61:3 (1988), 321–344 | MR
[61] C. Lucchesi, O. Piguet, K. Sibold, “Necessary and sufficient conditions for all order vanishing $\beta$-functions in supersymmetric Yang–Mills theories”, Phys. Lett. B, 201:2 (1988), 241–244 | DOI | MR
[62] A. J. Parkes, P. C. West, “Three-loop results in two-loop finite supersymmetric gauge theories”, Nucl. Phys. B, 256 (1985), 340–352 | DOI
[63] M. T. Grisaru, B. Milewski, D. Zanon, “The structure of UV divergences in SS YM theories”, Phys. Lett. B, 155:5–6 (1985), 357–363 | DOI
[64] M. Shifman, “Little miracles of supersymmetric evolution of gauge couplings”, Int. J. Mod. Phys. A, 11:32 (1996), 5761–5784, arXiv: ; Erratum, 14:11 (1999), 1809–1809 hep-ph/9606281 | DOI | DOI
[65] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10 (2021), 046, 45 pp., arXiv: 2108.05026 | DOI | MR
[66] D. Ghilencea, M. Lanzagorta, G. G. Ross, “Unification predictions”, Nucl. Phys. B, 511:1–2 (1998), 3–24, arXiv: hep-ph/9707401 | DOI
[67] O. V. Haneychuk, V. Yu. Shirokova, K. V. Stepanyantz, “Three-loop $\beta$-functions and two-loop anomalous dimensions for MSSM regularized by higher covariant derivatives in an arbitrary supersymmetric subtraction scheme”, JHEP, 09 (2022), 189, 32 pp., arXiv: 2207.11944 | DOI | MR
[68] I. Jack, D. R. T. Jones, A. F. Kord, “Snowmass benchmark points and three-loop running”, Ann. Phys., 316:1 (2005), 213–233, arXiv: hep-ph/0408128 | DOI