The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 630-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review some recent results of the studies of quantum corrections in supersymmetric theories derived using Slavnov's higher covariant derivative regularization. In particular, we demonstrate that the $\beta$-function of $\mathcal{N}=1$ supersymmetric theories is related to the anomalous dimensions of matter superfields by the NSVZ relation if the theory is regularized by higher covariant derivatives and the renormalization group functions are defined in terms of the bare couplings, because the corresponding loop corrections are given by integrals of double total derivatives in the momentum space. For the standard renormalization-group functions, we show that an all-loop NSVZ renormalization scheme is given by the HD$\,+\,$MSL renormalization prescription when the higher covariant derivative regularization is supplemented by minimal subtractions of logarithms. Applications of these results to the precise calculations in various supersymmetric theories are briefly described.
Keywords: higher covariant derivative regularization, supersymmetry, quantum corrections.
@article{TMF_2023_217_3_a12,
     author = {K. V. Stepanyantz},
     title = {The~structure of quantum corrections and exact results in supersymmetric theories from the~higher covariant derivative regularization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {630--648},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/}
}
TY  - JOUR
AU  - K. V. Stepanyantz
TI  - The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 630
EP  - 648
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/
LA  - ru
ID  - TMF_2023_217_3_a12
ER  - 
%0 Journal Article
%A K. V. Stepanyantz
%T The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 630-648
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/
%G ru
%F TMF_2023_217_3_a12
K. V. Stepanyantz. The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 630-648. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a12/

[1] A. A. Slavnov, “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31:2 (1971), 301–315 | DOI | MR

[2] A. A. Slavnov, “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174–177 | DOI

[3] A. A. Slavnov, “Regulyarizatsiya Pauli–Villarsa dlya neabelevykh kalibrovochnykh grupp”, TMF, 33:2 (1977), 210–217 | DOI | MR

[4] W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | DOI | MR

[5] W. Siegel, “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94:1 (1980), 37–40 | DOI | MR

[6] V. K. Krivoschekov, “Invariantnaya regulyarizatsiya dlya supersimmetrichnykh kalibrovochnykh teorii”, TMF, 36:3 (1978), 291–302 | DOI | MR

[7] P. West, “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268:1 (1986), 113–124 | DOI | MR

[8] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229:2 (1983), 381–393 | DOI

[9] D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang–Mills theory”, Phys. Lett. B, 123:1–2 (1983), 45–46 | DOI | MR

[10] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, M. A. Shifman, “Funktsiya Gell-Manna–Lou v supersimmetrichnykh kalibrovochnykh teoriyakh. Instantony protiv traditsionnogo podkhoda”, YaF, 43:2 (1986), 459

[11] A. I. Vainshtein, M. A. Shifman, “Reshenie problemy anomalii v supersimmetrichnykh kalibrovochnykh teoriyakh i operatornoe razlozhenie”, ZhETF, 91:3 (1986), 723–744

[12] W. A. Bardeen, A. J. Buras, D. W. Duke, T. Muta, “Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories”, Phys. Rev. D, 18:11 (1978), 3998–4017 | DOI

[13] L. V. Avdeev, O. V. Tarasov, “The three-loop beta-function in the $N=1,2,4$ supersymmetric Yang–Mills theories”, Phys. Lett. B, 112:4–5 (1982), 356–358 | DOI

[14] I. Jack, D. R. T. Jones, C. G. North, “$N=1$ supersymmetry and the three-loop gauge $\beta$-function”, Phys. Lett. B, 386:1–4 (1996), 138–140 | DOI

[15] I. Jack, D. R. T. Jones, C. G. North, “Scheme dependence and the NSVZ $\beta$-function”, Nucl. Phys. B, 486:1–2 (1997), 479–499, arXiv: hep-ph/9609325 | DOI

[16] I. Jack, D. R. T. Jones, A. Pickering, “The connection between DRED and NSVZ”, Phys. Lett. B, 435:1–2 (1998), 61–66, arXiv: hep-ph/9805482 | DOI

[17] R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, M. Steinhauser, “Four-loop $\beta$ function and mass anomalous dimension in dimensional reduction”, JHEP, 12 (2006), 024, 13 pp., arXiv: hep-ph/0610206 | DOI | MR

[18] L. Mihaila, “Precision calculations in supersymmetric theories”, Adv. High Energy Phys., 2013 (2013), 607807, 64 pp., arXiv: 1310.6178 | DOI | MR

[19] A. L. Kataev, K. V. Stepanyantz, “Scheme independent consequence of the NSVZ relation for $\mathcal{N}$ = 1 SQED with $N_f$ flavors”, Phys. Lett. B, 730 (2014), 184–189, arXiv: 1311.0589 | DOI

[20] A. L. Kataev, K. V. Stepanyants, “$\beta$-Funktsiya Novikova–Shifmana–Vainshteina–Zakharova v supersimmetrichnykh teoriyakh pri razlichnykh regulyarizatsiyakh i perenormirovochnykh predpisaniyakh”, TMF, 181:3 (2014), 475–486, arXiv: 1405.7598 | DOI | DOI | MR

[21] B. S. DeVitt, Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 | MR | MR | Zbl

[22] L. F. Abbott, “The background field method beyond one loop”, Nucl. Phys. B, 185:1 (1981), 189–203 | DOI

[23] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50 | MR

[24] S. J. Gates, Jr., M. T. Grisaru, M. Roček, W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Frontiers in Physics, 58, AIP, Melville, NY, 1983, arXiv: hep-th/0108200

[25] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1990 | MR | Zbl

[26] I. L. Buchbinder, S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol, UK, 1998 | MR

[27] O. Piguet, K. Sibold, “Renormalization of $N=1$ supersymmetrical Yang–Mills theories: (I). The classical theory”, Nucl. Phys. B, 197:2 (1982), 257–271 | DOI

[28] O. Piguet, K. Sibold, “Renormalization of $N=1$ supersymmetrical Yang–Mills theories: (II). The radiative corrections”, Nucl. Phys. B, 197:2 (1982), 272–289 | DOI

[29] I. V. Tyutin, “Perenormirovka superkalibrovochnykh teorii s nerasshirennoi supersimmetriei”, YaF, 37:3 (1983), 761–771 | Zbl

[30] J. W. Juer, D. Storey, “Nonlinear renormalization in superfield gauge theories”, Phys. Lett. B, 119:1–3 (1982), 125–127 | DOI

[31] J. W. Juer, D. Storey, “One loop renormalization of superfield Yang–Mills theories”, Nucl. Phys. B, 216:1 (1983), 185–208 | DOI

[32] A. E. Kazantsev, M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, M. B. Skoptsov, K. V. Stepanyantz, “Two-loop renormalization of the Faddeev–Popov ghosts in $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2018), 020, 22 pp., arXiv: 1805.03686 | DOI | MR

[33] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | MR | Zbl

[34] S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, K. V. Stepanyantz, “One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization”, JHEP, 05 (2016), 014, 21 pp., arXiv: 1603.04347 | DOI

[35] A. E. Kazantsev, M. B. Skoptsov, K. V. Stepanyantz, “One-loop polarization operator of the quantum gauge superfield for $\mathcal{N}=1$ SYM regularized by higher derivatives”, Modern Phys. Lett. A, 32:36 (2017), 1750194, 13 pp., arXiv: 1709.08575 | DOI | MR

[36] A. L. Kataev, K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for $\mathcal{N} = 1$ SQED”, Nucl. Phys. B, 875:2 (2013), 459–482, arXiv: 1305.7094 | DOI | MR

[37] K. V. Stepanyantz, “Non-renormalization of the $V\bar cc$-vertices in $\mathcal{N}=1$ supersymmetric theories”, Nucl. Phys. B, 909 (2016), 316–335, arXiv: 1603.04801 | DOI | MR

[38] J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | DOI | MR

[39] A. A. Slavnov, “Tozhdestva Uorda v kalibrovochnykh teoriyakh”, TMF, 10:2 (1972), 153–161 | DOI

[40] M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, K. V. Stepanyantz, “Finiteness of the two-loop matter contribution to the triple gauge-ghost vertices in $\mathcal N=1$ supersymmetric gauge theories regularized by higher derivatives”, Phys. Rev. D, 104:2 (2021), 025008, 12 pp., arXiv: 2102.12314 | DOI | MR

[41] M. Kuzmichev, N. Meshcheriakov, S. Novgorodtsev, V. Shatalova, I. Shirokov, K. Stepanyantz, “Finiteness of the triple gauge-ghost vertices in $\mathcal {N}=1$ supersymmetric gauge theories: the two-loop verification”, Eur. Phys. J. C, 82:1 (2022), 69, 12 pp., arXiv: 2111.04031 | DOI | MR

[42] A. A. Soloshenko, K. V. Stepanyants, “Trekhpetlevaya $\beta$-funktsiya $N=1$ supersimmetrichnoi elektrodinamiki, regulyarizovannoi vysshimi proizvodnymi”, TMF, 140:3 (2004), 437–459 | DOI | DOI | Zbl

[43] A. V. Smilga, A. Vainshtein, “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants”, Nucl. Phys. B, 704:3 (2005), 445–474 | DOI | MR

[44] K. V. Stepanyantz, “Derivation of the exact NSVZ $\beta$-function in $N=1$ SQED, regularized by higher derivatives, by direct summation of Feynman diagrams”, Nucl. Phys. B, 852:1 (2011), 71–107, arXiv: 1102.3772 | DOI | MR

[45] K. V. Stepanyantz, “The $\beta$-function of $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives”, JHEP, 10 (2019), 011, 48 pp., arXiv: 1908.04108 | DOI | MR

[46] A. I. Vainshtein, V. I. Zakharov, M. A. Shifman, “Tochnaya funktsiya Gell-Manna–Lou v supersimmetrichnoi elektrodinamike”, Pisma ZhETF, 42:4 (1985), 182–184

[47] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function in supersymmetric electrodynamics”, Phys. Lett. B, 166:3 (1986), 334–336 | DOI

[48] A. E. Kazantsev, K. V. Stepanyants, “Sootnoshenie mezhdu dvukhtochechnymi funktsiyami Grina $\mathcal N=1$ SKED s $N_f$ aromatami, regulyarizovannoi vysshimi proizvodnymi, v trekhpetlevom priblizhenii”, ZhETF, 147:4 (2015), 714–728, arXiv: 1410.1133 | DOI

[49] V. Yu. Shakhmanov, K. V. Stepanyantz, “Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization”, Nucl. Phys. B, 920 (2017), 345–367, arXiv: 1703.10569 | DOI | MR

[50] A. E. Kazantsev, V. Yu. Shakhmanov, K. V. Stepanyantz, “New form of the exact NSVZ $\beta$-function: the three-loop verification for terms containing Yukawa couplings”, JHEP, 04 (2018), 130, 36 pp., arXiv: 1803.06612 | DOI | MR

[51] K. Stepanyantz, “The all-loop perturbative derivation of the NSVZ $\beta$-function and the NSVZ scheme in the non-Abelian case by summing singular contributions”, Eur. Phys. J. C, 80:10 (2020), 911, 28 pp., arXiv: 2007.11935] | DOI

[52] A. E. Kazantsev, K. V. Stepanyantz, “Two-loop renormalization of the matter superfields and finiteness of $\mathcal{N}=1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2020), 108, arXiv: 2004.00330 | MR

[53] A. Parkes, P. West, “Finiteness in rigid supersymmetric theories”, Phys. Lett. B, 138:1–3 (1984), 99–104 | DOI

[54] P. West, “The Yukawa $\beta$-function in $N=1$ rigid supersymmetric theories”, Phys. Lett. B, 137:5–6 (1984), 371–373 | DOI

[55] S. Heinemeyer, J. Kubo, M. Mondragón, O. Piguet, K. Sibold, W. Zimmermann, G. Zoupanos, Reduction of couplings and its application in particle physics. Finite theories. Higgs and top mass predictions, arXiv: 1411.7155

[56] S. Heinemeyer, M. Mondragón, N. Tracas, G. Zoupanos, “Reduction of couplings and its application in particle physics”, Phys. Rep., 814 (2019), 1–43, arXiv: 1904.00410 | DOI | MR

[57] K. Stepanyantz, “Exact $\beta$-functions for $\mathcal{N}=1$ supersymmetric theories finite in the lowest loops”, Eur. Phys. J. C, 81:7 (2021), 571, 11 pp., arXiv: 2105.00900 | DOI

[58] D. I. Kazakov, “Finite $N=1$ SUSY field theories and dimensional regularization”, Phys. Lett. B, 179:4 (1986), 352–354 | DOI

[59] A. V. Ermushev, D. I. Kazakov, O. V. Tarasov, “Finite $N=1$ supersymmetric grand unified theories”, Nucl. Phys. B, 281:1–2 (1987), 72–84 | DOI

[60] C. Lucchesi, O. Piguet, K. Sibold, “Vanishing $\beta$-functions in $N=1$ supersymmetric gauged theories”, Helv. Phys. Acta, 61:3 (1988), 321–344 | MR

[61] C. Lucchesi, O. Piguet, K. Sibold, “Necessary and sufficient conditions for all order vanishing $\beta$-functions in supersymmetric Yang–Mills theories”, Phys. Lett. B, 201:2 (1988), 241–244 | DOI | MR

[62] A. J. Parkes, P. C. West, “Three-loop results in two-loop finite supersymmetric gauge theories”, Nucl. Phys. B, 256 (1985), 340–352 | DOI

[63] M. T. Grisaru, B. Milewski, D. Zanon, “The structure of UV divergences in SS YM theories”, Phys. Lett. B, 155:5–6 (1985), 357–363 | DOI

[64] M. Shifman, “Little miracles of supersymmetric evolution of gauge couplings”, Int. J. Mod. Phys. A, 11:32 (1996), 5761–5784, arXiv: ; Erratum, 14:11 (1999), 1809–1809 hep-ph/9606281 | DOI | DOI

[65] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10 (2021), 046, 45 pp., arXiv: 2108.05026 | DOI | MR

[66] D. Ghilencea, M. Lanzagorta, G. G. Ross, “Unification predictions”, Nucl. Phys. B, 511:1–2 (1998), 3–24, arXiv: hep-ph/9707401 | DOI

[67] O. V. Haneychuk, V. Yu. Shirokova, K. V. Stepanyantz, “Three-loop $\beta$-functions and two-loop anomalous dimensions for MSSM regularized by higher covariant derivatives in an arbitrary supersymmetric subtraction scheme”, JHEP, 09 (2022), 189, 32 pp., arXiv: 2207.11944 | DOI | MR

[68] I. Jack, D. R. T. Jones, A. F. Kord, “Snowmass benchmark points and three-loop running”, Ann. Phys., 316:1 (2005), 213–233, arXiv: hep-ph/0408128 | DOI