On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 613-629 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a detailed derivation of the commutation relations for the Poincaré–Birkhoff–Witt generators of the quantum superalgebra $\mathrm U_q(\mathfrak{gl}_{M|N})$.
Keywords: quantum general linear superalgebra, Poincaré–Birkhoff–Witt basis.
@article{TMF_2023_217_3_a11,
     author = {A. V. Razumov},
     title = {On {Poincar\'e{\textendash}Birkhoff{\textendash}Witt} basis of the~quantum general linear superalgebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {613--629},
     year = {2023},
     volume = {217},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a11/}
}
TY  - JOUR
AU  - A. V. Razumov
TI  - On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 613
EP  - 629
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a11/
LA  - ru
ID  - TMF_2023_217_3_a11
ER  - 
%0 Journal Article
%A A. V. Razumov
%T On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 613-629
%V 217
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a11/
%G ru
%F TMF_2023_217_3_a11
A. V. Razumov. On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 613-629. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a11/

[1] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl

[2] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), eds. A. E. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[3] M. Jimbo, “A$q$-difference analogue of $\mathrm U(\mathfrak g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR

[4] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory III. The Yang–Baxter relation”, Commun. Math. Phys., 200:2 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR

[5] G. Boos, F. Geman, A. Klyumper, Kh. S. Nirov, A. V. Razumov, “Universalnye ob'ekty integriruemosti”, TMF, 174:1 (2013), 25–45, arXiv: 1205.4399 | DOI | DOI | MR | Zbl

[6] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Universal ${R}$-matrix and functional relations”, Rev. Math. Phys., 26:6 (2014), 1430005, 66 pp., arXiv: 1205.1631 | DOI | MR

[7] Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342 | DOI

[8] A. V. Razumov, “$\ell$-Vesa i faktorizatsiya transfer-operatorov”, TMF, 208:2 (2021), 310–341, arXiv: 2103.16200 | DOI | DOI

[9] V. V. Bazhanov, A. N. Hibberd, S. M. Khoroshkin, “Integrable structure of $\mathcal W_3$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory”, Nucl. Phys. B, 622:3 (2002), 475–574, arXiv: hep-th/0105177 | DOI | MR

[10] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for higher rank”, J. Phys. A: Math. Theor., 47:27 (2014), 275201, 47 pp., arXiv: 1312.2484 | DOI | MR

[11] A. V. Razumov, “Quantum groups and functional relations for arbitrary rank”, Nucl. Phys. B, 971 (2021), 115517, 51 pp., arXiv: 2104.12603 | DOI | MR

[12] T. Kojima, “Baxter's $Q$-operator for the $W$-algebra $W_N$”, J. Phys. A: Math. Theor., 41:35 (2008), 355206, 16 pp., arXiv: 0803.3505 | DOI | MR

[13] Kh. S. Nirov, A. V. Razumov, “Quantum groups, {V}erma modules and $q$-oscillators: general linear case”, J. Phys. A: Math. Theor., 50:30 (2017), 305201, 19 pp., arXiv: 1610.02901 | DOI | MR

[14] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations”, J. Math. Phys., 57:11 (2016), 111702, 23 pp., arXiv: 1512.04446 | DOI | MR

[15] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations II. Arbitrary higher ranks”, J. Math. Phys., 58:9 (2017), 093504, 23 pp., arXiv: 1701.02627 | DOI | MR

[16] H. Yamane, “A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type $A_N$”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25:3 (1989), 503–520 | DOI | MR

[17] H. Yamane, “Quantized enveloping algebras associated with simple Lie superalgebras and their universal $R$-matrices”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 30:1 (1994), 15–87 | DOI | MR

[18] V. V. Bazhanov, Z. Tsuboi, “Baxter's $\mathbf{Q}$-operators for supersymmetric spin chains”, Nucl. Phys. B, 805:3 (2008), 451–516, arXiv: 0805.4274 | DOI | MR

[19] R. B. Zhang, “Finite dimensional irreducible representations of the quantum supergroup $\mathrm U_q(gl(m/n))$”, J. Math. Phys., 34:3 (1993), 1236–1254 | DOI | MR

[20] Z. Tsuboi, “Asymptotic representations and $q$-oscillator solutions of the graded Yang–Baxter equation related to Baxter $Q$-operators”, Nucl. Phys. B, 886 (2014), 1–30, arXiv: 1205.1471 | DOI | MR

[21] Z. Tsuboi, “A note on $q$-oscillator realizations of $U_q(gl(M|N))$ for Baxter $Q$-operators”, Nucl. Phys. B, 947 (2019), 114747, 33 pp., arXiv: 1907.07868 | DOI | MR

[22] A. V. Razumov, “Podkhod Khoroshkina–Tolstogo dlya kvantovykh superalgebr”, TMF, 215:1 (2023), 121–149, arXiv: 2210.12721 | DOI | DOI | MR

[23] M. Jimbo, “A $q$-analogue of $\mathrm U(\mathfrak{gl}(N + 1))$, Hecke algebra, the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR

[24] A. N. Leznov, M. V. Savelev, “Ob odnoi parametrizatsii kompaktnykh grupp”, Funkts. analiz i ego pril., 8:4 (1974), 87–88 | DOI | MR | Zbl

[25] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Opisanie nekotorogo klassa prektsionnykh operatorov dlya prostykh kompleksnykh algebr Li”, Matem. zametki, 26:1 (1979), 15–25 | DOI | MR | Zbl

[26] V. N. Tolstoi, “Ekstremalnye proektory dlya kontragradientnykh algebr i superalgebr Li konechnogo rosta”, UMN, 44:1(265) (1989), 211–212 | DOI | MR | Zbl