@article{TMF_2023_217_3_a10,
author = {A. V. Pribytok},
title = {Novel integrability in string theory from automorphic symmetries},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {585--612},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a10/}
}
A. V. Pribytok. Novel integrability in string theory from automorphic symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 585-612. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a10/
[1] C.-N. Yang, C. P. Yang, “Thermodynamics of a one-dimensional system of bosons with repulsive delta function interaction”, J. Math. Phys., 10:7 (1969), 1115–1122 | DOI | MR
[2] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228 ; M. Jimbo, “Introduction to the Yang–Baxter equation”, Internat. J. Modern Phys. A, 4:15 (1989), 3759–3777 ; M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, 10, World Sci., Singapore, 1989 | DOI | MR | DOI | MR | DOI | MR
[3] H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Physik, 71:3–4 (1931), 205–226 | DOI
[4] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[5] R. J. Baxter, “Hard hexagons: exact solution”, J. Phys. A: Math. Gen., 13:3 (1980), L61–L70 | DOI | MR
[6] E. K. Sklyanin, “Kvantovyi variant metoda obratnoi zadachi rasseyaniya”, Differentsialnaya geometriya, gruppy Li i mekhanika. III, Zap. nauchn. sem. LOMI, 95, Izd-vo “Nauka”, Leningrad. otd., L., 1980, 55–128 ; L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | DOI | MR | Zbl | MR | Zbl
[7] M. de Leeuw, A. Pribytok, P. Ryan, “Classifying integrable spin-$1/2$ chains with nearest neighbour interactions”, J. Phys. A: Math. Theor., 52:50, 505201, 17 pp., arXiv: 1904.12005 | DOI | MR
[8] M. de Leeuw, A. Pribytok, A. L. Retore, P. Ryan, “New integrable 1D models of superconductivity”, J. Phys. A: Math. Theor., 53:38 (2020), 385201, 30 pp., arXiv: 1911.01439 | DOI | MR
[9] N. Beisert, “The $\mathfrak{su}(2|2)$ dynamic S-matrix”, Adv. Theor. Math. Phys., 12:5 (2008), 945–979, arXiv: hep-th/0511082 | DOI | MR
[10] N. Beisert, P. Koroteev, “Quantum deformations of the one-dimensional Hubbard model”, J. Phys. A: Math. Theor., 41:25 (2008), 255204, 47 pp., arXiv: 0802.0777 | DOI | MR
[11] G. Arutyunov, S. Frolov, “Foundations of the $AdS_5\times S^5$ superstring: I”, J. Phys. A: Math. Theor., 42:5 (2009), 254003, 121 pp., arXiv: 0901.4937 | DOI | MR
[12] M. de Leeuw, A. Pribytok, P. Ryan, “Classifying integrable spin-$1/2$ chains with nearest neighbour interactions”, J. Phys. A: Math. Theor., 52:50 (2019), 505201, 17 pp., arXiv: 1904.12005 | DOI | MR
[13] M. G. Tetelman, “Gruppa Lorentsa dlya dvumernykh integriruemykh reshetchatykh sistem”, ZhETF, 82:2 (1982), 528–535 | MR
[14] T. Bargheer, N. Beisert, F. Loebbert, “Boosting nearest-neighbour to long-range integrable spin chains”, J. Stat. Mech., 2008:11 (2008), L11001, 9 pp., arXiv: 0807.5081 | DOI
[15] F. Loebbert, “Lectures on Yangian symmetry”, J. Phys. A: Math. Theor., 49:32 (2016), 323002, 74 pp. | DOI | MR
[16] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Izd-vo “Nauka”, Leningrad. otd., L., 18–49 | DOI | Zbl
[17] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl
[18] M. Lüscher, “Volume dependence of the energy spectrum in massive quantum field theories. II. Scattering states”, Commun. Math. Phys., 105:2 (1986), 153–188 ; R. A. Janik, T. Lukowski, “Wrapping interactions at strong coupling: The giant magnon”, Phys. Rev. D, 76:12 (2007), 126008, 14 pp., arXiv: ; Z. Bajnok, R. A. Janik, “Four-loop perturbative Konishi from strings and finite size effects for multiparticle states”, Nucl. Phys. B, 807:3 (2009), 625–650, arXiv: 0708.22080807.0399 | DOI | DOI | DOI | MR
[19] T. Bargheer, N. Beisert, F. Loebbert, “Long-range deformations for integrable spin chains”, J. Phys. A: Math. Theor., 42:28 (2009), 285205, 58 pp., arXiv: 0902.0956 | DOI | MR
[20] M. P. Grabowski, P. Mathieu, “Integrability test for spin chains”, J. Phys. A: Math. Gen., 28:17 (1995), 4777–4798 | DOI | MR
[21] M. de Leeuw, C. Paletta, A. Pribytok, A. L. Retore, P. Ryan, “Yang–Baxter and the Boost: splitting the difference”, SciPostPhys., 11:3 (2021), 069, 36 pp., arXiv: 2010.11231 | DOI | MR
[22] R. S. Vieira, “Solving and classifying the solutions of the Yang–Baxter equation through a differential approach. Two-state systems”, JHEP, 10 (2018), 110, 48 pp., arXiv: 1712.02341 | DOI | MR
[23] F. C. Alcaraz, M. Droz, M. Henkel, V. Rittenberg, “Reactin-diffusion processes, critical dynamics, and quantum chains”, Ann. Phys., 230:2 (1994), 250–302 | DOI | MR
[24] A. A. Stolin, P. P. Kulish, “New rational solutions of Yang–Baxter equation and deformed Yangians”, Czechoslovak J. Phys., 47:1 (1997), 123–129 | DOI | MR
[25] J. M. Maldacena, “The large-$N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133, arXiv: ; E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: ; I. R. Klebanov, J. M. Maldacena, “Superconformal gauge theories and noncritical superstrings”, Internat. J. Modern Phys. A, 19:29 (2004), 5003–5015, arXiv: ; J. A. Minahan, K. Zarembo, “The Bethe ansatz for $\mathcal N=4$ super Yang–Mills”, JHEP, 03 (2003), 013, 29 pp., arXiv: hep-th/9711200hep-th/9802150hep-th/0409133hep-th/0212208 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[26] N. Beisert, W. Galleas, T. Matsumoto, “A quantum affine algebra for the deformed Hubbard chain”, J. Phys. A: Math. Theor., 45 (2012), 365206, 20 pp., arXiv: 1102.5700 | DOI
[27] N. Beisert, C. Ahn, L. F. Alday et al., “Review of AdS/CFT integrability: An overview”, Lett. Math. Phys., 99:1–3 (2012), 3–32, arXiv: 1012.3982 | DOI | MR
[28] A. Pribytok, “Automorphic symmetries and $AdS_n$ integrable deformations”, Lie Theory and Its Applications in Physics (Sofia, Bulgaria, June 2021), Springer Proceedings in Mathematics and Statistics, 396, ed. V. Dobrev, Springer, Singapore, 2021, 351–358, arXiv: 2112.10843 | DOI | MR
[29] A. Pribytok, Automorphic symmetries, string integrable structures and deformations, arXiv: 2210.16348
[30] B. Sutherlend, “Two-dimensional hydrogen bonded crystals without the ice rule”, J. Math. Phys., 11:11 (1970), 3183–3186 ; “Model for a multicomponent quantum system”, Phys. Rev. B, 12:9 (1975), 3795–3805 ; K. Sogo, M. Uchinami, Y. Akutsu, M. Wadati, “Classification of exactly solvable two-component models”, Progr. Theoret. Phys., 68:2 (1982), 508–526 | DOI | DOI | DOI | MR
[31] M. de Leeuw, C. Paletta, A. Pribytok, A. L. Retore, A. Torrielli, “Free fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT”, JHEP, 02 (2021), 191, 61 pp., arXiv: 2011.08217 | DOI | MR
[32] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański, Jr., A. Torrielli, “The all-loop integrable spin-chain for strings on $\mathrm{AdS}_3\times S^3\times T^4$: the massive sector”, JHEP, 08 (2013), 043, 42 pp., arXiv: 1303.5995 | DOI | MR
[33] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski, Jr., “Towards the all-loop worldsheet $S$ matrix for $\mathrm{AdS}_3\times S^3\times T^4$”, Phys. Rev. Lett., 113:13 (2014), 131601, 5 pp., arXiv: 1403.4543 | DOI
[34] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski, Jr., “The complete $\mathrm{AdS}_3\times\mathrm S^3\times\mathrm T^4$ worldsheet S matrix”, JHEP, 10 (2014), 066, 73 pp., arXiv: 1406.0453 | DOI | MR
[35] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański, Jr., “The $\mathrm{AdS}_3\times\mathrm{S}^3\times\mathrm{S}^3\times\mathrm{S}^1$ worldsheet $S$ matrix”, J. Phys. A: Math. Theor., 48:41 (2015), 415401, 41 pp., arXiv: 1506.00218 | DOI | MR
[36] B. Hoare, “Towards a two-parameter $q$-deformation of $\mathrm{AdS}_3\times S^3\times M^4$ superstrings”, Nucl. Phys. B, 891 (2015), 259–295, arXiv: 1411.1266 | DOI
[37] R. R. Metsaev, A. A. Tseytlin, “Type IIB superstring action in $\mathrm{AdS}_5\times S^5$ background”, Nucl. Phys. B, 533:1–3 (1998), 109–126, arXiv: hep-th/9805028 | DOI
[38] B. Hoare, A. Pittelli, A. Torrielli, “$S$-matrix algebra of the $\mathrm{AdS}_2\times S^2$ superstring”, Phys. Rev. D, 93:6 (2016), 066006, 17 pp., arXiv: ; A. Fontanella, A. Torrielli, “Massless $AdS_2$ scattering and Bethe ansatz”, JHEP, 09 (2017), 075, 27 pp., arXiv: 1509.075871706.02634 | DOI | MR | DOI | MR
[39] M. de Leeuw, A. Pribytok, A. L. Retore, P. Ryan, “Integrable deformations of AdS/CFT”, JHEP, 05 (2022), 012, 32 pp., arXiv: 2109.00017 | DOI | MR
[40] O. Ohlsson Sax, B. Stefanski Jr., A. Torrielli, “On the massless modes of the $\mathrm{AdS}_3$/CFT$_2$ integrable systems”, JHEP, 03 (2013), 109, 94 pp., arXiv: 1211.1952 | DOI | MR
[41] S. L. Lukyanov, “The integrable harmonic map problem versus Ricci flow”, Nucl. Phys. B, 865:2 (2012), 308–329, arXiv: 1205.3201 | DOI | MR
[42] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl
[43] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[44] A. Sfondrini, “Towards integrability for $\mathrm{AdS}_3/\mathrm{CFT}_2$”, J. Phys. A: Math. Theor., 48:2 (2015), 023001, 145 pp., arXiv: 1406.2971 | DOI | MR