@article{TMF_2023_217_3_a1,
author = {E. N. Antonov and A. Yu. Orlov},
title = {A~new solvable two-matrix model and {the~BKP} tau function},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {457--472},
year = {2023},
volume = {217},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a1/}
}
E. N. Antonov; A. Yu. Orlov. A new solvable two-matrix model and the BKP tau function. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 457-472. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a1/
[1] A. Mironov, A. Morozov, “Superintegrability of Kontsevich matrix model”, Eur. Phys. J. C, 81:3 (2021), 270, 11 pp., arXiv: 2011.12917 | DOI
[2] A. Alexandrov, “Intersection numbers on $\overline{\mathcal M}_{g,n}$ and BKP hierarchy”, JHEP, 09 (2021), 013, 14 pp., arXiv: 2012.07573 | DOI | MR
[3] J. Lee, “A square root of Hurwitz numbers”, Manuscripta Math., 162:1–2 (2020), 99–113, arXiv: 1807.03631 | DOI | MR
[4] M. Vuletić, The shifted Schur process and asymptotics of large random strict plane partitions, Internat. Math. Res. Not. IMRN, 2007, 2007, 53 pp., arXiv: math-ph/0702068 | DOI | MR
[5] A. Mironov, A. Morozov, S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C, 80:2 (2020), 97, 16 pp., arXiv: 1904.11458 | DOI
[6] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, A. Yu. Orlov, “Around spin Hurwitz numbers”, Lett. Math. Phys., 111:5 (2021), 124, 39 pp., arXiv: 2012.09847 | DOI | MR
[7] A. Alexandrov, “KdV solves BKP”, Proc. Natl. Acad. Sci. USA, 118:25 (2021), e2101917118, 2 pp., arXiv: 2012.10448 | DOI | MR
[8] A. D. Mironov, A. Morozov, “Generalized $Q$-functions for GKM”, Phys. Lett. B, 819 (2021), 136474, 12 pp., arXiv: 2101.08759 | DOI | MR
[9] A. Mironov, A. Morozov, A. Zhabin, “Connection between cut-and-join and Casimir operators”, Phys. Lett. B, 822 (2021), 136668, 12 pp., arXiv: 2105.10978 | DOI | MR
[10] A. Mironov, A. Morozov, A. Zhabin, “Spin Hurwitz theory and Miwa transform for the Schur Q-functions”, Phys. Lett. B, 829 (2022), 137131, 6 pp., arXiv: 2111.05776 | DOI
[11] A. Mironov, V. Mishnyakov, A. Morozov, A. Zhabin, “Natanzon–Orlov model and refined superintegrability”, Phys. Lett. B, 829 (2022), 137041, 5 pp., arXiv: 2112.11371 | DOI
[12] C. A. Tracy, H. Widom, “A limit theorem for shifted Schur measures”, Duke Math. J., 123:1 (2004), 171–208, arXiv: math.PR/0210255 | DOI | MR
[13] A. Yu. Orlov, “Gipergeometricheskie funktsii, svyazannye s $Q$-mnogochlenami Shura, i uravnenie $B$KP”, TMF, 137:2 (2003), 253–270, arXiv: math-ph/0302011 | DOI | DOI | MR | Zbl
[14] J. J. C. Nimmo, A. Yu. Orlov, “A relationship between rational and multi-soliton solutions of the BKP hierarchy”, Glasg. Math. J., 47:A (2005), 149–168 | DOI
[15] S. Matsumoto, “$\alpha$-Pfaffian, Pfaffian point process and shifted Schur measure”, Linear Algebra Appl., 403 (2005), 369–398 | DOI | MR
[16] J. W. van de Leur, A. Yu. Orlov, “Random turn walk on a half line with creation of particles at the origin”, Phys. Lett. A, 373:31 (2009), 2675–2681 | DOI | MR
[17] Dzh. Kharnad, I. V. van de Ler, A. Yu. Orlov, “Kratnye summy i integraly kak tau-funktsii neitralnoi ierarkhii Kadomtseva–Petviashvili”, TMF, 168:1 (2011), 112–124 | DOI | DOI
[18] A. N. Sergeev, “Tenzornaya algebra tozhdestvennogo predstavleniya kak modul nad superalgebrami Li $\mathfrak Gl(n,m)$ i $Q(n)$”, Matem. sb., 123(165):3 (1984), 422–430 | DOI | MR | Zbl
[19] V. N. Ivanov, “Razmernost kosykh sdvinutykh diagramm Yunga i proektivnye kharaktery beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zap. nauchn. sem. POMI, 240, POMI, SPb., 1997, 115–135, arXiv: math/0303169 | DOI
[20] A. Eskin, A. Okounkov, R. Pandharipande, “The theta characteristic of a branched covering”, Adv. Math., 217:3 (2008), 873–888 | DOI | MR
[21] J. Stembridge, “On Schur's $Q$-functions and the primitive idempotents of a commutative Hecke algebra”, J. Algebraic Combin., 1:1 (1992), 71–95 | DOI | MR
[22] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups (CIRM, Luminy, Marseille, France, July 4–8, 1988), Advanced Series in Mathematical Physics, 7, ed. V. G. Kac, World Sci., Teaneck, NJ, 1989, 449–464 | DOI | MR
[23] J. J. C. Nimmo, “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A, 23:5 (1990), 751–760 | DOI | MR
[24] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR
[25] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nucl. Phys. B, 366:3 (1991), 569–601 | DOI
[26] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. V. Zabrodin, “Unification of all string models with $c1$”, Phys. Lett. B, 275:3–4 (1992), 311–314 | DOI | MR
[27] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, “Generalized Kazakov–Migdal–Kontsevich model: group theory aspects”, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051 | DOI | MR
[28] J. W. van de Leur, “Matrix integrals and geometry of spinors”, J. Nonlinear Math. Phys., 8:2 (2001), 288–310 | DOI | MR
[29] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR
[30] P. Zinn-Justin, “HCIZ integral and 2D Toda lattice hierarchy”, Nucl. Phys. B, 634:3 (2002), 417–432 ; P. Zinn-Justin, J.-B. Zuber, “On some integrals over the $U(N)$ unitary group and their large $N$ limit”, J. Phys. A, 36:12 (2003), 3173–3193 | DOI | DOI | MR
[31] A. Yu. Orlov, D. M. Scherbin, “Gipergeometricheskie resheniya solitonnykh uravnenii”, TMF, 128:1 (2001), 84–108, arXiv: nlin/0001001 | DOI | DOI | MR | Zbl
[32] A. Yu. Orlov, “New solvable matrix integrals”, Internat. J. Modern Phys. A, 19:supp02 (2004), 276–293 | DOI | MR
[33] J. Harnad, A. Yu. Orlov, “Fermionic construction of partition functions for two-matrix models and perturbative Schur functions expansions”, J. Phys. A.: Math. Gen., 39:28 (2006), 8783–8809 | DOI | MR
[34] A. V. Mikhailov, “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448
[35] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl
[36] K. Takasaki, “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 139–163 | DOI | MR
[37] K. Takasaki, “Toda hierarchies and their applications”, Phys. A: Math. Theor., 51:20 (2018), 203001, 35 pp. | DOI | MR
[38] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, arXiv: nlin/0001001
[39] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR
[40] E. N. Antonov, A. Yu. Orlov, Instantons in $\sigma$ model and tau functions, arXiv: 1611.02248
[41] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202, arXiv: solv-int/9706006 | DOI | MR
[42] J. van de Leur, “The Adler–Shiota–van Moerbeke formula for the BKP hierarchy”, J. Math. Phys., 36:9 (1995), 4940–4951, arXiv: 9411159 | DOI | MR
[43] J. van de Leur, “The $n$th reduced BKP hierarchy, the string equation and $BW_{1+\infty}$-constraints”, Acta Appl. Math., 44:1–2 (1996), 185–206 | DOI | MR
[44] J. Harnad, A. Yu. Orlov, “Polynomial KP and BKP $\tau$-functions and correlators”, Ann. H. Poincaré, 22:9 (2021), 3025–3049 | DOI | MR
[45] M. Bertola, M. Gekhtman, J. Szmigielski, “Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model”, J. Math. Phys., 54:4 (2013), 043517, 25 pp. | DOI | MR
[46] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl