A~new solvable two-matrix model and the~BKP tau function
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 457-472
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present exactly solvable modifications of the two-matrix Zinn-Justin–Zuber model and write it as a tau function. The grand partition function of these matrix integrals is written as the fermion expectation value. The perturbation theory series is written explicitly in terms of a series in strict partitions. The related string equations are presented.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
matrix model, tau function, projective Schur's functions, string equation, BKP hierarchy.
                    
                  
                
                
                @article{TMF_2023_217_3_a1,
     author = {E. N. Antonov and A. Yu. Orlov},
     title = {A~new solvable two-matrix model and {the~BKP} tau function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--472},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a1/}
}
                      
                      
                    TY - JOUR AU - E. N. Antonov AU - A. Yu. Orlov TI - A~new solvable two-matrix model and the~BKP tau function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 457 EP - 472 VL - 217 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a1/ LA - ru ID - TMF_2023_217_3_a1 ER -
E. N. Antonov; A. Yu. Orlov. A~new solvable two-matrix model and the~BKP tau function. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 3, pp. 457-472. http://geodesic.mathdoc.fr/item/TMF_2023_217_3_a1/
