On Bäcklund transformations for some second-order nonlinear differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 391-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain second-order nonlinear differential equations (and the associated Bäcklund transformations) with an arbitrary analytic function of the independent variable. These equations (which are not of Painlevé type in general) under certain constraints imposed on an arbitrary analytic function can be reduced, in particular, to the second, third or fourth Painlevé equation. We consider the properties of the Bäcklund transformations for the second-order nonlinear differential equations generated by two systems of two first-order nonlinear differential equations with quadratic nonlinearities in derivatives of the unknown functions.
Mots-clés : Painlevé property, Painlevé equations
Keywords: direct and inverse Bäcklund transformations.
@article{TMF_2023_217_2_a9,
     author = {V. V. Tsegel'nik},
     title = {On {B\"acklund} transformations for some second-order nonlinear differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--403},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - On Bäcklund transformations for some second-order nonlinear differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 391
EP  - 403
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/
LA  - ru
ID  - TMF_2023_217_2_a9
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T On Bäcklund transformations for some second-order nonlinear differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 391-403
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/
%G ru
%F TMF_2023_217_2_a9
V. V. Tsegel'nik. On Bäcklund transformations for some second-order nonlinear differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 391-403. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/

[1] P. A. Clarkson, “Open problems for Painlevé equations”, SIGMA, 15 (2019), 006, 20 pp. | DOI | MR

[2] P. Deift, “Some open problems in random matrix theory and the theory of integrable system. II”, SIGMA, 13 (2017), 016, 23 pp. | DOI | MR

[3] N. A. Kudryashov, “Rational and special solutions for some Painlevé hierarchies”, Regul. Chaotic Dyn., 24:1 (2019), 90–100 | DOI | MR

[4] V. I. Gromak, “Analiticheskie svoistva reshenii uravnenii obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differents. uravneniya, 56:8 (2020), 1017–1033 | DOI

[5] N. Kudryashov, “Lax pairs and rational solutions of similarity reductions for Kupershmidt and Sawada–Kotera hierarchies”, Regul. Chaotic Dyn., 26:3 (2021), 271–292 | DOI | MR

[6] I. A. Bobrova, “Simmetrii nestatsionarnoi ierarkhii $\mathrm{P}_\mathrm{II}^{(n)}$ i ikh prilozheniya”, TMF, 213:1 (2022), 65–94 | DOI | DOI | MR

[7] V. I. Gromak, “O svoistvakh reshenii obobschennoi ierarkhii uravneniya $P_{34}$”, Differents. uravneniya, 58:2 (2022), 153–163 | DOI | DOI | MR

[8] S. P. Balandin, V. V. Sokolov, “On the Painlevé test for non-Abelian equations”, Phys. Lett. A, 243:3–4 (1998), 267–272 | DOI | MR

[9] V. E. Adler, “Painlevé type reductions for the non-Abelian Volterra latties”, J. Phys. A: Math. Theor., 54:3 (2021), 035204 | DOI | MR

[10] V. E. Adler, V. V. Sokolov, “O matrichnykh uravneniyakh Penleve PII”, TMF, 207:2 (2021), 188–201 | DOI | DOI | MR

[11] V. E. Adler, M. P. Kolesnikov, “Non-Abelian Toda lattice and analogs of Painlevé III equation”, J. Math. Phys., 63:10 (2022), 103504, 11 pp. | DOI | MR

[12] I. A. Bobrova, V. V. Sokolov, “On matrix Painlevé-4 equations”, Nonlinearity, 35:12 (2022), 6528–6556 | DOI | MR

[13] I. Bobrova, V. Retakh, V. Rubtsov, G. Sharygin, “A fully noncommutative analog of the Painlevé IV equation and a structure of its solutions”, J. Phys. A: Math. Theor., 55:47 (2022), 475205, 30 pp. | DOI | MR

[14] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, “Universitetskoe”, Minsk, 1990 | MR

[15] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | MR | Zbl

[16] V. I. Gromak, “O resheniyakh tretego uravneniya Penleve”, Differents. uravneniya, 9:11 (1973), 2082–2083 | MR | Zbl

[17] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939 | MR | Zbl

[18] V. V. Tsegelnik, “Ob odnom sootnoshenii mezhdu resheniyami tretego uravneniya Penleve”, TMF, 102:3 (1995), 364–366 | DOI | MR | Zbl

[19] N. A. Lukashevich, “K teorii chetvertogo uravneniya Penleve”, Differents. uravneniya, 3:5 (1967), 771–780 | MR | Zbl

[20] A. N. W. Hone, F. Zullo, “A Hirota bilinear equations for Painlevé thranscendents $P_{IV}$, $P_{II}$ and $P_I$”, Random Matrices Theory Appl., 7:4 (2018), 184001, 15 pp. | DOI | MR

[21] N. A. Lukashevich, “Elementarnye resheniya nekotorykh uravnenii Penleve”, Differents. uravneniya, 1:6 (1965), 731–735 | MR

[22] V. V. Tsegelnik, “O svoistvakh reshenii dvukh differentsialnykh uravnenii vtorogo poryadka so svoistvom Penleve”, TMF, 206:3 (2021), 361–367 | DOI | DOI | MR

[23] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izdatelskii tsentr BGU, Minsk, 2007

[24] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004

[25] G. Vittikh, Noveishie issledovaniya po odnoznachnym analiticheskim funktsiyam, Fizmatgiz, M., 1960 | MR | MR

[26] V. V. Tsegelnik, “O resheniyakh sistemy differentsialnykh uravnenii, svyazannoi s tretim uravneniem Penleve”, Doklady BGUIR, 2008, no. 2(32), 137–139