On B\"acklund transformations for some second-order nonlinear differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 391-403

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain second-order nonlinear differential equations (and the associated Bäcklund transformations) with an arbitrary analytic function of the independent variable. These equations (which are not of Painlevé type in general) under certain constraints imposed on an arbitrary analytic function can be reduced, in particular, to the second, third or fourth Painlevé equation. We consider the properties of the Bäcklund transformations for the second-order nonlinear differential equations generated by two systems of two first-order nonlinear differential equations with quadratic nonlinearities in derivatives of the unknown functions.
Keywords: Painlevé property, Painlevé equations, direct and inverse Bäcklund transformations.
@article{TMF_2023_217_2_a9,
     author = {V. V. Tsegel'nik},
     title = {On {B\"acklund} transformations for some second-order nonlinear differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--403},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - On B\"acklund transformations for some second-order nonlinear differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 391
EP  - 403
VL  - 217
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/
LA  - ru
ID  - TMF_2023_217_2_a9
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T On B\"acklund transformations for some second-order nonlinear differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 391-403
%V 217
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/
%G ru
%F TMF_2023_217_2_a9
V. V. Tsegel'nik. On B\"acklund transformations for some second-order nonlinear differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 391-403. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a9/