Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 378-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A system of equations with a quadratic nonlinearity in the electric field potential and temperature is proposed to describe the process of heating of semiconductor elements of an electrical board, with the thermal and electrical “breakdowns” possible in the course of time. For this system of equations, the existence of a classical solution not extendable in time is proved and sufficient conditions for a unique global-in-time solvability are also obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear equations of Sobolev type, blow-up, local solubility, nonlinear capacity, estimates of blow-up time.
                    
                  
                
                
                @article{TMF_2023_217_2_a8,
     author = {M. O. Korpusov and A. Yu. Perlov and A. V. Tymoshenko and R. S. Shafir},
     title = {Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--390},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/}
}
                      
                      
                    TY - JOUR AU - M. O. Korpusov AU - A. Yu. Perlov AU - A. V. Tymoshenko AU - R. S. Shafir TI - Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 378 EP - 390 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/ LA - ru ID - TMF_2023_217_2_a8 ER -
%0 Journal Article %A M. O. Korpusov %A A. Yu. Perlov %A A. V. Tymoshenko %A R. S. Shafir %T Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 378-390 %V 217 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/ %G ru %F TMF_2023_217_2_a8
M. O. Korpusov; A. Yu. Perlov; A. V. Tymoshenko; R. S. Shafir. Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 378-390. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/
