Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 378-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of equations with a quadratic nonlinearity in the electric field potential and temperature is proposed to describe the process of heating of semiconductor elements of an electrical board, with the thermal and electrical “breakdowns” possible in the course of time. For this system of equations, the existence of a classical solution not extendable in time is proved and sufficient conditions for a unique global-in-time solvability are also obtained.
Keywords: nonlinear equations of Sobolev type, blow-up, local solubility, nonlinear capacity, estimates of blow-up time.
@article{TMF_2023_217_2_a8,
     author = {M. O. Korpusov and A. Yu. Perlov and A. V. Tymoshenko and R. S. Shafir},
     title = {Global-in-time solvability of a~nonlinear system of equations of a~thermal{\textendash}electrical model with quadratic nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--390},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. Yu. Perlov
AU  - A. V. Tymoshenko
AU  - R. S. Shafir
TI  - Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 378
EP  - 390
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/
LA  - ru
ID  - TMF_2023_217_2_a8
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. Yu. Perlov
%A A. V. Tymoshenko
%A R. S. Shafir
%T Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 378-390
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/
%G ru
%F TMF_2023_217_2_a8
M. O. Korpusov; A. Yu. Perlov; A. V. Tymoshenko; R. S. Shafir. Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 378-390. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a8/

[1] A. V. Timoshenko, D. V. Kaleev, A. Yu. Perlov, V. M. Antoshina, D. V. Ryabchenko, “Sravnitelnyi analiz analiticheskikh i empiricheskikh metodik otsenki tekuschikh parametrov nadezhnosti radiolokatsionnykh kompleksov monitoringa”, Izv. vuzov. Elektronika, 25:3 (2020), 244–254 | DOI

[2] M. O. Korpusov, “O razrushenii resheniya uravneniya, rodstvennogo uravneniyu Gamiltona–Yakobi”, Matem. zametki, 93:1 (2013), 81–95 | DOI | DOI | MR | Zbl

[3] M. O. Korpusov, “O razrushenii resheniya nelokalnogo uravneniya s gradientnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11 (2012), 45–53

[4] M. O. Korpusov, A. A. Panin, A. E. Shishkov, “O kriticheskom pokazatele “mgnovennoe razrushenie” versus “lokalnaya razreshimost” v zadache Koshi dlya modelnogo uravneniya sobolevskogo tipa”, Izv. RAN. Ser. matem., 85:1 (2021), 118–153 | DOI | DOI | MR

[5] M. O. Korpusov, A. Yu. Perlov, A. V. Timoshenko, R. S. Shafir, R. S. Shafir, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii teplo-elektricheskoi modeli”, Matem. zametki, 114:5 (2023), 759–772

[6] F. G. Bass, V. S. Bochkov, Yu. S. Gurevich, Elektrony i fonony v ogranichennykh poluprovodnikakh, Nauka, M., 1984

[7] V. L. Bonch-Bruevich, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1990

[8] V. L. Bonch-Bruevich, I. P. Zvyagin, A. G. Mironov, Domennaya elektricheskaya neustoichivost v poluprovodnikakh, Nauka, M., 1972

[9] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005 | MR

[10] N. V. Krylov, Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Geldera, Nauchnaya kniga, Novosibirsk, 1998 | MR

[11] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968 | Zbl

[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[13] V. Pogozhelskii, “Issledovanie integralov parabolicheskogo uravneniya i kraevykh zadach v neogranichennoi oblasti”, Matem. sb., 47(89):4 (1959), 397–430 | MR | Zbl

[14] A. A. Panin, “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Matem. zametki, 97:6 (2015), 884–903 | DOI | DOI | MR

[15] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, UMN, 49:4(298) (1994), 47–74 | DOI | MR | Zbl

[16] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[17] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl